Before the South Dakota Public Utilities Commission State of South Dakota

In the Matter of the Application of NorthWestern Corporation d/b/a NorthWestern Energy For Authority to Increase Rates for Electric Utility Service in South Dakota

Docket No. EL23-
Exhibit \qquad

CLASS COST OF SERVICE RATE DESIGN

Prefiled Direct Testimony and Schedules of
PAUL M.NORMAND

June 15, 2023

TABLE OF CONTENTS

I. INTRODUCTION AND QUALIFICATIONS AND EXPERIENCE 1
II. CLASS COST OF SERVICE STUDY 3
III. ANALYSIS OF LIGHTING SERVICES COSTS 19
IV. RATE 34 LARGE COMMERCIAL \& INDUSTRIAL STANDBY RATE 24
V. SUMMARY AND RECOMMENDATIONS 27

LIST OF EXHIBITS

EXHIBIT
Exhibit__(PMN-1) QUALIFICATIONS AND EXPERIENCE
Exhibit_(PMN-2) CLASS COST OF SERVICE DESCRIPTION
Exhibit__(PMN-3) SYSTEM PEAK DEMANDS
Exhibit __(PMN-4) LIGHTING STUDY

Exhibit_(PMN-5) RATE 34 LARGE COMMERCIAL \& INDUSTRIAL STANDBY RATE

I. INTRODUCTION AND QUALIFICATIONS AND EXPERIENCE

Q. PLEASE STATE YOUR NAME, POSITION AND BUSINESS ADDRESS.
A. My name is Paul M. Normand. I am a Principal with the firm of Management Applications Consulting, Inc. ("MAC"), 1103 Rocky Drive, Suite 201, Reading, PA 19609.
Q. ON WHOSE BEHALF ARE YOU APPEARING IN THIS PROCEEDING?
A. I am appearing and providing testimony on behalf of NorthWestern Corporation $\mathrm{d} / \mathrm{b} / \mathrm{a}$ NorthWestern Energy ("NorthWestern" or "Company"). NorthWestern provides electricity and natural gas service to consumers in the northwestern United States and serves approximately 753,600 electric and natural gas customers in South Dakota, Montana and Nebraska. As of December 31, 2022, NorthWestern served 64,678 electric distribution customers in South Dakota.
Q. HAVE YOU PREVIOUSLY TESTIFIED BEFORE THE SOUTH DAKOTA PUBLIC UTILITIES COMMSSION ("COMMISSION")?
A. No, this is my first appearance before the Commission.
Q. Please describe MAC.
A. MAC is a management consulting firm that provides rate and regulatory assistance including lead lag studies, allocated cost of service studies, and depreciation services for electric, gas and water utilities.
Q. Please summarize your education and business experience.
A. This information is contained in Exhibit PMN-1.

Q. WHAT IS THE PURPOSE OF YOUR DIRECT TESTIMONY?

A. My Direct Testimony primarily addresses NorthWestern's class cost of service study ("CCOS")Lighting service costs, and a Standby service rate. In addition, I provide supporting information for the rate design proposals sponsored by Company witness Mr . Jeffrey Decker.
Q. WHAT STATEMENTS AND SCHEDULES IN NORTHWESTERN'S RATE FILING DO YOU SPONSOR?
A. I sponsor Statements N and O . Statement N , pages 1 through 36 shows the test year cost of service allocated to the customer classes for which the increased rates are proposed. Statement N provides both a study per books class cost of service study and a class cost of service study adjusted using the Company's claimed revenue requirement in this docket. Statement O, pages 1 through 9 compares the results of the allocated cost of service study by rate class with the revenues under the Company's claimed rate of return and revenues under proposed rates. I also sponsor Schedules N-1 through N-9 which shows the cost of service functionalization, classification, and allocation details.

Q. WHAT EXHIBITS DO YOU SPONSOR?

A. I sponsor Exhibits__(PMN-1) through (PMN-5) as set forth in the table of contents above and attached to this testimony.
Q. WERE THE STATEMENTS, SCHEDULES, AND EXHIBITS YOU ARE SPONSORING PREPARED BY YOU OR UNDER YOUR DIRECT SUPERVISION?
A. Yes, they were.
Q. ARE THE TESTIMONY AND THE CONTENTS OF THE STATEMENTS, SCHEDULES, AND EXHIBITS YOU SPONSOR TRUE AND ACCURATE TO THE BEST OF YOUR KNOWLEDGE AND BELIEF?
A. Yes, they are.
Q. HOW IS YOUR DIRECT TESTIMONY ORGANIZED?
A. My Direct Testimony consists of five sections. Section I provides my qualifications and experience and describes the purpose and organization of my Direct Testimony. Section II describes and supports the CCOS I have conducted on behalf of the Company and which is provided and summarized in Statements N and O of the rate filing. Section III of my Direct Testimony describes the Lighting Service Study that MAC has prepared to assist NorthWestern in its design of Lighting service rates. The Lighting Service Study calculates the relative costs of each type of lighting service offered by NorthWestern. Section IV of my Direct Testimony discusses the design of a new Rate 34 Standby Rate for the Large Commercial \& Industrial rate class. Finally, Section V summarizes my testimony and recommendations.

II. CLASS COST OF SERVICE STUDY

Q. WHAT IS THE PURPOSE OF A CCOS?

A. The purpose of a CCOS is to calculate the revenue requirement for each class of customers based on the costs the utility has incurred to serve the class. Once identified, these class revenue requirements provide useful guidelines for rate design. Class revenue requirements are calculated by allocating the detailed components of a utility's revenue requirement to individual classes using allocation factors and direct assignments that
represent the cost drivers of the costs being allocated. In a CCOS, the total retail cost of service is prorated among customer classes so that the sum of the class revenue requirements equals the total revenue requirement at issue. Although there is often disagreement among parties regarding cost allocation measurement and attribution, the use of CCOSs as a guide to rate design is a longstanding practice utilized by this Commission and by numerous other state regulatory agencies.

Q. HAVE YOU PREPARED A CCOS ON BEHALF OF NORTHWESTERN?

A. Yes, I have. The per book CCOS and the adjusted, or pro forma, CCOS are presented as Statement N of NorthWestern's rate filing. Statement N includes the details of the allocated cost of service study by rate class per books and per the claimed revenue requirements. This statement shows the following for each of the studies:

1. Detail of the functional cost of service study allocating costs to the 16 cost functions.
2. Detail of the 16 functional costs for the labor allocator.
3. Listing of the functional allocators.
4. Detail of the allocation of the functionalized costs to the customer classes.
5. Listing of the class allocators used to allocate the functionalized costs to rate classes.
6. Detail of the calculation of income taxes at present revenues by customer class.
7. Detail of the calculation of income taxes at the claimed rate of return by customer class.
Q. PLEASE DESCRIBE THE LAYOUT AND OPERATION OF THE CLASS COST OF SERVICE MODEL YOU ARE SPONSORING ON BEHALF OF NORTHWESTERN IN THIS FILING.
A. The CCOS results are presented in Statements N and O of the Rate Filing Package. Statement N consists of a cover page providing the Section N filing requirements and 36 pages of allocated cost of service information. Statement O presents revenues, returns, income taxes, and allocated costs by rate class at present rate revenue levels, at equalized claimed rate of returns, and at the Company's proposed rates. Statement O consists of summaries of the detailed CCOS results from Statement N. Statement O is comprised of sets of three pages with the first page of each set providing the summary cost information for the major customer groupings (i.e., Total Residential, Total Irrigation, Total Commercial, Total Commercial \& Industrial, Total Lighting, and Controlled Off-Peak service) and the next two pages including more detailed breakdowns of costs among the individual rate classes.

Statement N provides the detailed functionalization and allocation information that is summarized in Statement O. Pages 1-3 of Statement N present cost of service information for each customer class at present rates, at the Company's claimed rate of return, and at the proposed rates. Pages $4-15$ of Statement N detail the allocation of rate base to customer classes. Pages 16-18 provide the allocation of revenue by customer class. Pages 19-24 detail the allocation to classes of operation and maintenance ("O\&M") expenses, depreciation expense, regulatory credits and taxes other than income taxes. Pages 25-30 of Statement N provide of income taxes and operating income by customer class. Pages 31-33 set forth each functionalized cost component of base rate revenues at
the claimed rate of return and each functionalized cost component of base rate revenues at the present rate of return. Pages $34-36$ set forth the functionalized gross receipts tax increase by class and by function for the claimed rate of return.

Schedule N-1 consists of 24 pages and provides the detail of the calculation of income taxes at present rates by functionalized cost component. Pages 1-6 show the functionalization of revenue by type to classes. Pages 7-9 provide the allocation of functionalized O\&M and depreciation expenses by class of service. Pages 10-18 set forth the detailed allocations of functionalized tax components to customer classes. Pages 1924 of Schedule N-1 provide the calculation of operating income, rate base, and rate of return by class at present rate levels. Schedule $\mathrm{N}-2$ provides similar information and is laid out in the same manner as Schedule $\mathrm{N}-1$, but employs revenues and revenue requirements at the Company's claimed rate of return in the calculation of income taxes by customer class.

Schedule N-3 consists of 14 pages and provides the functionalization of NWE's revenue requirement components. Pages 1-4 of Schedule N -3 provide the functionalization of rate base. Pages 5-6 provide the functionalization of revenue. Pages 7-10 provide the functionalization of O\&M expenses. Pages 11-14 provide the detailed functionalization of depreciation expense, other taxes, and income taxes.

Schedule N-4 consists of two pages and provides the functionalization of the labor costs within the O\&M expense accounts. Schedule N-5 consists of nine pages and provides the detailed allocation factors by function employed in the allocation of functionalized costs to customer classes. Schedule N-6 consists of six pages that provide the detailed functionalization factors employed in the allocation of total Company costs to functions.

Schedule N-7 is comprised of eight pages which provide functionalized base rate revenues by class of service at the Company's present rate of return and claimed rate of return. Schedule $\mathrm{N}-8$ consists of three pages that provide the summary of the customer component costs of each class's revenue requirement.

Q. WHAT ARE THE STEPS INVOLVED IN CONDUCTING A CCOS?

A. There are three steps involved in conducting a CCOS - functionalization, classification, and allocation. Functionalization identifies the operational source where the costs are incurred, either directly or indirectly, with respect to the physical process of providing service. For example, the costs of generating units and purchased power (production function) are identified separately from costs associated with transmission lines (transmission function) which are, in turn, segregated from the costs of the distribution system (distribution function). Each function (production, transmission, and distribution) may be further separated into sub-functions. For example, distribution costs may, as in this case, be further separated into ten separate functions to allow a more accurate cost allocation and to provide information that may be useful in designing cost-based rates for customers receiving service from NorthWestern's distribution system.

Classification is the next step in conducting a cost of service study. Classification refers to the separation of functionalized costs according to a measurable usage characteristic that drives the cost. Classification further breaks down functionalized costs into demand, energy, and customer-related costs. Demand costs are costs that result from the rate of power consumption over a relatively short period of time (usually 15 minutes to an hour). Demand costs frequently reflect the costs of equipment that must be sized to meet a rated maximum load requirement placed on that equipment. Energy costs are those
costs that result from the volume of energy supplied over time. Fuel expense is generally the largest type of energy cost incurred by an electric utility. Customer costs are costs that vary as a function of the number of customers. Meters are an example of customer-related costs, although the cost analysis should account for the fact that meters serving large loads are more expensive than meters serving smaller customer loads.

The final step in conducting a cost of service study is the allocation of functionalized and classified costs to individual customer classes. The allocation step uses customer class metrics, along with direct assignments, where applicable, to allocate the specific cost components that have been functionalized and classified to individual customer classes. Customer class information such as non-coincident peak demands, coincident peak demands, annual energy use, and customer counts are employed to calculate class allocation factors.

Q. PLEASE DESCRIBE THE PROCESS OF COST FUNCTIONALIZATION YOU HAVE EMPLOYED IN THE CCOS YOU SPONSOR.

A. The individual details of costs comprising the total revenue requirement are separated according to the function or physical service they provide. The major functions employed in NorthWestern's CCOS are:

- Production - costs associated with power generation and purchased capacity. Production costs are the costs associated with securing power supply resources sufficient to meet maximum load requirements of the system;
- Transmission - Transmission costs are costs that are associated with the high voltage system that transports power and energy to load centers. Transmission facilities include transmission lines, substations, and associated equipment. External transmission costs
included in FERC account 565 are not included in base rates, but are recovered through NorthWestern's separate external transmission cost tracker which includes offsetting revenues;
- Distribution - costs associated with distributing and measuring the power and energy from the transmission system to end users. Distribution facilities include distribution substations, primary and secondary conductors and devices, transformers, voltage regulators, and other equipment necessary to transport power from the high voltage side of the distribution substation to the point of delivery of the power and energy. NorthWestern's CCOS identifies the costs associated with four demand-related distribution functions and two customer-related distribution functions;
- Customer - expenses that tend to be correlated to the number of customers - i.e., meter reading, billing, customer accounting, customer care and service, and other similar costs. NorthWestern's CCOS employs two customer-related distribution functions as well as three customer-related functions of meter reading, customer records, and other customer-related costs;
- Lighting - costs that are directly associated with street and area lighting;
- Other Energy - energy-related costs that are not recovered in the fuel clause, but which are recovered in base rates. These costs are mainly fuel stock, non-recoverable fuel costs, fuel balancing costs, and coal taxes;
- Fuel - fuel and the energy portion of purchased power costs and offsetting revenues rrecovered through a tracker; and
- Ad Valorem - property taxes recovered in the Ad Valorem recovery clause.

Exhibit_(PMN-2) provides a more detailed description of the functions employed
in NorthWestern's retail CCOS as well as detailed descriptions for the cost classifications and allocation factors employed in Statements N and O .

A detailed Functional Labor Expense allocator accurately functionalizes laborrelated costs. This allocator was developed by functionalizing all labor-related Operation and Maintenance expense by each account and capital labor and summing these allocated labor-related amounts to create the labor expense functional allocation factor.

Q. HOW DID YOU CLASSIFY PRODUCTION COSTS?

A. As stated above, all production-related costs other than fuel expense were classified as being demand-related.

Q. HOW DID YOU CLASSIFY TRANSMISSION COSTS?

A. All transmission costs are classified as demand-related costs. NWE's transmission system must be capable of serving the maximum demands placed upon it, regardless of when those maximum demands occur.

Q. HOW HAVE DISTRIBUTION COSTS BEEN CLASSIFIED?

A. Structures, station equipment, poles and towers, conductors and conduit, and transformers have been classified as demand-related costs. Services, meters, and certain other distribution expenses, such as customer service and information expenses, have been classified as customer-related costs. Distribution costs also include the costs of providing lighting services. Much of the cost of providing lighting services are unique to that service and are readily identifiable using standard accounting and property records. Thus, lighting service is largely directly assigned its distribution costs. Exhibit_(PMN-2) provides more detailed information regarding how each cost of service component was classified in Statements N and O.
Q. ONCE NORTHWESTERN'S COSTS OF SERVICE ARE FUNCTIONALIZED AND CLASSIFIED, WHAT IS THE NEXT STEP IN THE PROCESS OF CALCULATING CLASS COSTS OF SERVICE?
A. Once costs are functionalized and classified, I allocate costs to rate classes. Sixteen allocators were used to allocate the classified functional costs. These allocators are developed externally and are derived from (a) demands imposed by the class (using either monthly coincident peak ("CP") demands or annual non-coincident peak ("NCP") demands); (b) energy use by class at the generation source (i.e., after accounting for line and transformation losses); or (c) number of customers served and meters (weighted by the appropriate weighting factor to recognize differences in types of customers and their impacts upon the system). These allocations are then summarized within the cost of service model to derive costs of service for each customer class. The allocation process also includes the detailed calculation of income taxes at present revenues and at equalized claimed rates of return. These income tax calculations were performed in order to properly functionalize and allocate income taxes to the customer classes.
Q. YOU PREVIOUSLY EXPLAINED THAT PRODUCTION PLANT WAS CLASSIFIED AS DEMAND-RELATED. HOW WAS GENERATION PLANT ALLOCATED?
A. Production costs were allocated on the basis of class contributions to the 12 monthly system peak demands during the test year, an allocation approach referred to as the Twelve Coincident Peak ("12CP") demand allocation method.
Q. HOW DID YOU ALLOCATE THE FUEL COSTS ASSOCIATED WITH THE PRODUCTION PLANT, THE EXTERNAL TRANSMISSION COSTS, AND AD VALOREM COSTS?
A. Most fuel costs are not recovered in base rates. The fuel clause revenues were determined for the test period by customer class. The offsetting costs, which equaled the fuel revenues, were then allocated on the basis of the fuel revenues by rate class. The result is that fuel revenues equaled allocated fuel costs by rate class and, therefore, have no effect on base rates. This same approach was used for the External Transmission functional costs and the Ad Valorem functional costs both of which are recovered through rate mechanisms other than base rates. The small percentage of fuel-related costs that are recovered in base rates were allocated to rate classes on the basis of energy use adjusted to losses at input.
Q. PURCHASED POWER IS BOOKED BY ELECTRIC UTILITIES IN FERC ACCOUNT 555. HOW DID YOU ALLOCATE THE DEMAND PORTION OF PURCHASED POWER COSTS TO CLASSES?
A. NorthWestern's firm power supply contracts have demand charges that are not recoverable in its Fuel Clause. These purchased power demand costs were allocated on the basis of 12CP demands consistent with all other generating resources in the study..
Q. HOW DID YOU ALLOCATE TRANSMISSION-RELATED COSTS?
A. I used the 12CP method to allocate transmission function plant and expenses.
Q. WHY DID YOU EMPLOY CLASS CONTRIBUTIONS TO THE TWELVE MONTHLY COINCIDENT PEAK DEMANDS IN THE TEST YEAR TO ALLOCATE THE DEMAND-RELATED COSTS OF GENERATION AND TRANSMISSION PLANT?
A. NWE must build or otherwise secure sufficient power supply resources to meet its peak demands regardless of the times at which those system peak demands occur. Based upon my analyses, I believe that most months of the year should be considered peak months for cost allocation purposes.

Q. PLEASE DESCRIBE THE ANALYSES YOU HAVE CONDUCTED THAT SUPPORT THE USE OF BOTH WINTER AND SUMMER MONTHS IN THE ALLOCATION OF SYSTEM PEAK-RELATED PRODUCTION DEMAND COSTS.

A. Please refer to Exhibit__ (PMN-3), page 1 which sets forth monthly peak demands for the 12 months ended December 31, 2022. Note that the system peak demand occurred in the month of July. However, during the test year the demands were also high for the winter months of January, February, March and December. Monthly historical demands reveals that the magnitudes of winter monthly demands relative to summer peak demands have historically been fairly close. The sum of the peak demands for the test year months of January, February, March and December are 94 percent of the sum of the peak demand for the months of June, July, August and September. The demands of the four summer months of June through September are not significantly different from the peak demands during the winter months December through March. The remaining months provide reduced demand levels that provide for the orderly scheduling of maintenance for the Company's other facilities. For this reason, I recommend that customer contributions to monthly system peak demands in all 12 months of the test period be employed to allocate production and transmission related demand costs.
Q. PLEASE DESCRIBE HOW YOU ALLOCATED DISTRIBUTION-RELATED FUNCTIONAL COSTS TO CUSTOMER CLASSES IN YOUR COST OF SERVICE STUDY.
A. Distribution rate base and expense accounts were allocated on the basis of customer class non-coincident peak ("NCP") demands. NCP demands are the maximum demands of the customer class and represent the undiversified loads placed upon system equipment at or near the customer's point of service. Distribution substations, primary service, and transformer costs were allocated based upon the NCP demands of customers taking service at either primary or secondary voltages. Secondary distribution plant was allocated in a consistent manner, using the NCP demands of customers taking service at secondary voltages.

Q. HOW WERE THE REMAINING DISTRIBUTION-RELATED FUNCTIONAL COSTS ALLOCATED?

A. Service laterals connect the secondary transformer to the customer premises. Services costs include customer-related costs that are allocated to classes on the basis of the customers' individual maximum demands. Meters costs are allocated to classes on the basis of the number of customers weighted by the relative cost of a meter for that class. The remaining plant accounts and related costs, installations on customer premises, and street lighting and signal systems are exclusively used for lighting services of NorthWestern. Therefore, these plant costs are directly assigned to the lighting class as a whole.

Q. HOW WERE THE REMAINING FUNCTIONAL COSTS ALLOCATED TO RATE CLASSES?

A. The meter reading functional costs were allocated to rate classes based on a weighted number of meter allocators. The customer records-related functional costs were allocated to rate classes based on a weighted number of customer allocators. The customer other functional costs relate mostly to customer service and information expense. The allocator used is based on a 50% weighting of the number of customers and a 50% weighting of the kWh sales at the generation level.

Q. HOW WAS GENERAL PLANT ALLOCATED?

A. General plant consists of plant and equipment necessary to support personnel involved in the overall operation of the system. General plant is a cost that is common to all functions and cost classifications. As a common cost, General plant does not readily fall into a demand, energy, or customer classification. However, plant costs and Operation and Maintenance ("O\&M") expenses for production, transmission, distribution, customer accounting, and customer information have already been functionalized, classified, and allocated to classes. As a result, the level of wages and salaries recorded within the O\&M expense and capital accounts is known, and allocation factors have been developed using this information. General plant is functionalized and allocated on the basis of the prior assignment of distribution wages and salaries by O\&M expense and capital labor.

Q. HOW ARE THE REMAINING RATE BASE ITEMS ALLOCATED TO CLASSES?

A. Depreciation reserves are functionalized and allocated to classes based upon the prior allocation of related plant accounts. Additions and deductions from rate base are allocated using the most appropriate allocation factors for the items being assigned. For example, cash working capital is broken into three components --

1. Materials \& Supplies, which is functionalized and allocated on the basis of previously allocated production, transmission, and distribution plant,
2. Cash Working Capital, which is functionalized and allocated on the basis of the sum of O\&M expense, taxes other than income, income taxes, and interest expense, and
3. Fuel Stock, which is functionalized as energy-related and allocated on the basis of loss-adjusted energy sales. Deferred income taxes were functionalized and allocated on the basis of total plant.

Q. HOW DID YOU DETERMINE EACH CUSTOMER CLASS'S REVENUES FOR PURPOSES OF THE CCOS?

A. Revenues from Sales of Electricity by class are recorded in NorthWestern's books and are directly assigned to the class producing the revenue. Fuel revenue, external transmission revenue, and ad valorem revenue are directly assigned to the class producing the revenues. Non-fuel-related wholesale revenues are assigned on the basis of loss-adjusted energy and fuel-related wholesale revenues are allocated based upon the allocation of fuel expense. Other revenues are comprised of late payment charges, which are allocated on the basis of late payment history by class, and miscellaneous service charges, rents and other electric revenues, which are allocated on the basis of previously allocated total plant by class. Pole rental revenues were allocated and functionalized on the previously functionalized distribution overhead lines plant. Revenue from steam sales was directly assigned and allocated on the same basis as production plant.
Q. PLEASE DESCRIBE THE ALLOCATION OF O\&M EXPENSES, DEPRECIATION EXPENSE, REGULATORY CREDITS, AND TAXES OTHER
THAN INCOME TAXES.
A. Generation costs and non-recoverable purchased power demand charges are functionalized as production-related and allocated on the basis of the 12CP demand allocation factor. Fuel expense and wholesale fuel expense are functionalized to the fuel function and allocated as previously described. Non-recoverable fuel costs and the costs of fuel balancing are energy-related and allocated on the basis of loss adjusted energy sales. Transmission expenses are allocated on the basis of previously allocated transmission plant. Distribution expenses are functionalized to the associated plant and then allocated on the basis of the previously allocated distribution plant components. Similarly, customer-related expenses are functionalized and then allocated using weighted number of meters, weighted number of customers, and weighted sales allocators. Depreciation expense is functionalized based upon the associated plant values and then allocated on the basis of the previously allocated plant in service. Taxes other than income taxes are identified by type and allocated accordingly. For example, Delaware franchise taxes and South Dakota gross receipts taxes are functionalized and allocated based upon the revenue requirement at the Company's claimed rate of return; ad valorem taxes are assigned to the ad valorem function and then allocated on the basis of ad valorem revenues billed by customer class, and coal taxes are allocated as energy-related costs. Payroll taxes were functionalized and allocated on the basis of the functionalized labor expense.

Q. PLEASE DESCRIBE THE ALLOCATION OF FEDERAL INCOME TAX.

A. As previously stated, federal income tax is not directly allocated to customer classes. Instead, the revenue and cost components used to calculate NWE's South Dakota retail federal income tax are functionalized and allocated to classes. These allocated income tax components are then used to calculate the income tax liability for each class. The detailed computation of federal income taxes is provided in Schedule N-2 for income taxes at present rates and Schedule N-3 for income taxes at the claimed rate of return.
Q.

PLEASE DESCRIBE THE RESULTS OF THE CCOS AND COMPARE THESE

 RESULTS WITH THE CLASS REVENUES PRODUCED BY NORTHWESTERN'S PRESENT RATES.A. Pages 1 through 3 of Statement N provide the revenues, costs, and returns by customer class under present, claimed and proposed rates. This cost information is summarized in Table 1 below.

Table 1

	Present Revenues	Present Rate of Return	Claimed Revenues	Percent Increase	Proposed Rates	Proposed Increase (\$)	Proposed Increase $(\%)$	Prop. ROR
Residential	$\$ 47,207,213$	3.07%	$\$ 66,421,260$	40.70%	$\$ 59,087,261$	$11,880,049$	25.17%	5.81%
Irrigation	204,088	0.24%	362,325	77.53%	257,783	53,696	26.31%	2.69%
Commercial	$12,767,249$	4.85%	$15,572,285$	21.97%	$15,972,116$	$3,204,867$	25.10%	7.93%
 Ind	$56,655,630$	5.88%	$64,458,613$	13.77%	$71,791,769$	$15,136,139$	26.72%	9.16%
Municipal	628,710	12.391%	469,502	-25.32%	778,962	150,252	23.90%	16.89%
Lighting	$1,972,030$	-1.80%	$2,999,337$	52.09%	$2,401,950$	429,920	21.80%	2.10%
Controlled Off-Peak	79,701	4.17%	104,949	31.68%	98,454	18,752	23.53%	6.67%
Total Retail	$\$ 119,514,621$	4.51%	$\$ 150,388,271$	25.83%	$\$ 150,388,296$	$\$ 30,873,674$	25.83%	7.54%

As indicated on Table 1 above, the differences between present revenues and allocated costs vary significantly by class of service. Mr. Jeffrey Decker's Direct Testimony
supports NorthWestern's proposed revenue distribution, including the Company's proposed rate mitigation concerns. Mr. Decker also developed support of the Company's rate design.

III. ANALYSIS OF LIGHTING SERVICES COSTS

Q. WHAT IS AN ANALYSIS OF LIGHTING SERVICE COSTS AND HOW IS SUCH AN ANALYSIS USED?

A. A separate analysis of lighting service costs was performed to derive reasonable current cost estimates for each of the installed fixtures, brackets, and poles contained within the Company's lighting rate schedules. The cost differentials between the lights resulting from this analysis were adjusted to match the target revenue established in NorthWestern's class proposed revenues.

Q. WHAT APPROACH WAS SELECTED TO PERFORM THE LIGHTING ANALYSIS?

A. The analysis of lighting was based on an accounting class cost of service approach using the most currently available data for 2022. The analysis consisted of using the CCOS functional results, as provided by Statement N, for gross plant, depreciation, net plant, O\&M expenses, and existing revenue levels to calculate a unit charge for each functional cost area. These calculated costs include the functional costs for Production (excluding fuel), Transmission, Distribution, and Lighting related plant and O\&M expense, as shown in Table 8 of Exhibit__(PMN-4).
Q. PLEASE DESCRIBE THE LIGHTING SERVICE RATES INCLUDED IN NORTHWESTERN'S LIGHTING COST ANALYSIS AND DESCRIBE THE LEVEL OF DETAIL INCLUDED WITHIN EACH OF THESE RATES.
A. NorthWestern's lighting analysis included two lighting service rate schedules, Rate Schedule 19 and Rate Schedule 56. Rate Schedule 19, referred to as the Reddy-Guard class of service, includes residential, commercial, industrial, farm and rural area, outdoor area, and street lighting. Rate Schedule 56's class of service is Company or customer owned highway, and street and area lighting systems. Rate Schedule 56 is available for lighting systems owned by NorthWestern or political sub-divisions.

For each of these lighting rate schedules, a detailed analysis was performed at the revenue code level which identified the fixture by type of lamp (i.e., High Pressure Sodium, Mercury Vapor, and Metal Halide) and wattage (100, 250, and 1000). The revenue codes were then grouped and analyzed by rate code.

Rate Schedule 19 includes six rate code groups:

1. Rate Code U10 - Reddy-Guard Residential Unmetered
2. Rate Code U10 - Reddy-Guard Residential Metered
3. Rate Code U20 - Reddy-Guard Commercial Unmetered
4. Rate Code U20 - Reddy-Guard Commercial Metered
5. Rate Code U30 - Public Lighting Unmetered
6. Rate Code U30 - Public Lighting Metered

Rate Schedule 56 includes six rate code groups:

1. Rate Code U30 - Distribution Pole Mounting - Company Owned
2. Rate Code U30 - Distribution Pole Mounting - Customer Owned
3. Rate Code U30 - Metal Pole Mounting - Company Owned
4. Rate Code U30 - Metal Pole Mounting - Customer Owned
5. Rate Code U30 - Wood Pole Mounting - Company Owned
6. Rate Code U30 - Wood Pole Mounting - Customer Owned

Q. PLEASE DESCRIBE HOW THE LIGHTING ANALYSIS WAS PERFORMED.

A. The first step of the analysis was to isolate current costs by major functions and review the costs to ensure that only those relevant portions of costs be considered and included. In order to facilitate the cost calculations and allocations, costs were allocated and developed on dollars per kilowatt-hour (" $\$ / \mathrm{kWh} "$) by function. This $\$ / \mathrm{kWh}$ by function approach was employed to incorporate the underlying assumption that lighting is an off-peak load and, therefore, is not a cost driver for the Company's distribution cost investments. The assumption is based on a review of the load data which indicates the lighting class was coincident with the monthly system only in November and December and partially coincident with the monthly peak in the months of January and October. Furthermore, historical peaks have occurred during summer daylight hours when lighting services are not used. For this reason, the use of these investments for approximately 4,043 (off-peak) hours per year indicates that kWh usage is a reasonable basis upon which to assign costs.

The second step of the analysis was to establish a common table of current installed costs applicable to all rate schedules that would capture the existing gross plant booked in each account. These installed costs were then used to calculate the current costs for each existing revenue code (fixture type and wattage) category included within each lighting rate schedule. These calculated costs were scaled to the installed gross plant costs for each
lighting rate class's revenue code in order to match the level of existing booked gross plant account costs. Net plant was allocated to the revenue code items based on existing booked gross plant costs within each rate code group, as shown in Table 7 of the Lighting Study. Due to limited historical plant data, the same average vintage was assumed for all units in the lighting analysis.

The third step was to calculate functional $\$ / \mathrm{kWh}$ for net plant by rate class using the Company's class cost of service study's plant accounting data for Rate Class 19 and Rate Class 56, as shown in Table 9 of the lighting study. The functional $\$ / \mathrm{kWh}$ for net operating expenses (NOE) were calculated using the functional operating expense, other operating revenue, and wholesale revenue from the Company's class cost of service study, as shown in Tables 11A and 11B of the lighting study. The functional lighting plant $\$ / \mathrm{kWh}$ costs were adjusted to the class target revenue level by subtracting the NOE from the target revenues and dividing them by the kWh for each class. These calculated costs per kWh for each of the rate class's rate codes are summarized on Table 8, provided in Exhibit_(PMN-4).

The fourth step in the lighting analysis was to calculate the monthly charge for each revenue code within each rate class's rate code. This was accomplished by taking each functional cost per kWh (production, transmission, distribution, lighting NOE, and lighting plant) and multiplying these costs by the annual kWh , dividing these costs by the number of units, and then adding the functional costs together to determine a monthly charge for each revenue code. The monthly charges for each revenue code were multiplied by the number of units within each revenue code to get the annual target revenues for each revenue
code. The revenue code revenues within Rate Class were added together to compute the total rate class target revenues.

The final step in the lighting analysis was to compare the current monthly charges to the cost based calculated monthly charges for each rate code within each rate class. The cost based monthly revenue code charges were then adjusted to incorporate an increase of 22% for Total Lighting to achieve the required revenue increases found in Mr. Jeffrey Decker's Rate Moderation file.

Q. BRIEFLY SUMMARIZE THE RESULTS OF NORTHWESTERN'S LIGHTING

 COST ANALYSIS.A. The lighting cost analysis indicates the following:

Lighting Schedule

Rate 19 (U10) Reddy Guard Residential Metered
Rate 19 (U10) Reddy Guard Residential Unmetered
Rate 19 (U20) Reddy Guard Commercial Metered
Rate 19 (U20) Reddy Guard Commercial Unmetered
Rate 19 (U30) Public Lighting (PL) Unmetered
Rate 19 (U30) Public Lighting (PL) Metered
Rate 56 (U30) PL w/Distribution Pole Mounting-Co Owned Rate 56 (U30) PL w/Distribution Pole Mounting- Cust Own Rate 56 (U30) PL w/Metal Pole Mounting- Company Owned Rate 56 (U30) PL w/Metal Pole Mounting -Customer Owned Rate 56 (U30) PL w/Wood Pole Mounting-Company Owned Rate 56 (U30) PL w/Wood Pole Mounting-Customer Owned

Change to Recover Costs of Service Increase.
Q. HOW WERE THESE COSTS BY LIGHTING SERVICE TYPE (REVENUE CODE LEVEL) USED TO DETERMINE THE COSTS OF THE VARIOUS LIGHTING SERVICES OFFERED BY THE COMPANY?
A. After the costs by lighting service type were calculated, the differentials between the
revenue codes within each rate code group of each lighting service rate schedule were
adjusted to match the target revenue established in the Company's class proposed revenues.
Q. DO THE LIGHTING COSTS BY SERVICE TYPE THAT RESULT FROM THE
LIGHTING ANALYSIS YOU SPONSOR REASONABLY AND ACCURATELY
REFLECT NORTHWESTERN'S COSTS OF PROVIDING THESE TYPES OF
LIGHTING SERVICES?
A. Yes, they do.

IV. RATE 34 LARGE COMMERCIAL \& INDUSTRIAL STANDBY RATE

Q. PLEASE PROVIDE A BRIEF DISCUSSION OF A UTILITY'S STANDBY SERVICE.
A. The use of customer's onsite generation requires that some level of pricing needs to be developed by the Company to provide the necessary backup facilities in the event that a customer's generating facilities become inoperable. The complexities of this pricing approach require considerations for the following support:

Contract Demand - Customer maximum demand which will establish level of applicable Standby charge that customer is responsible to pay each month.

Backup Service - provide equivalent capacity in the event of inoperable customer facilities to generate power. These outage events are unscheduled and can occur on any hour or day of the year.
$\underline{\text { Maintenance Service - a customer's need to perform routine and periodic maintenance on }}$ its facilities on a schedule service with the utility. This approach ensures a best practice for both utility and customer operation.

While there are many scenarios that can exist that add many layers of complexity, the pricing goal of the standby rate is to provide backup supply and distribution infrastructure support for a customer's return to service even on a very limited basis.
Q.

HOW WOULD YOU DEVELOP THE COST ASSIGNMENT AND RATE PRICING LEVELS TO ENSURE A FAIR REFLECTION OF COSTS RESPONSIBILITY FOR ALL EXISTING AND NEW STANDBY CUSTOMERS WHO REQUIRE INTERMITTENT AND LIMITED USE OF A UTILITY'S GENERATION AND INFRASTRUCTURE FACILITIES?
A. The utility company must invest in both generating and transmission facilities to provide safe and reliable power for all hours of the year. This infrastructure requires a considerable amount of investment that must be made to accomplish this for all levels of service.

Supply

One of the major considerations is to recognize that customers with onsite generation facilities provide the customer with virtually all its power requirements. Each onsite generation will experience various periods of unavailability due to both unforeseen equipment problems/malfunctions to periodic maintenance that is known and coordinated with the utility to minimize any potential delivery problems.

In order to recognize the infrequent operating factors of customer facilities, one should consider incorporating a well-known statistic in utility generation operation called a forced outage rate.

This statistic reflects the generation and interconnection which will be inoperable for some limited period of time over a calendar year. For our purposes in this Standby rate derivation, we have assumed a Forced Outage Rate of 10% which can be thought of as an
industrywide factor for all types of customer-owned facilities. Initial immature (new) facilities may easily exceed this level, but over time, good engineering and coordination will from time to time be even consistently lower than 10%. This forced outage value would be periodically reviewed and updated to reflect a customer installation and maintenance upkeep over time. We have also assumed that each customer is an independent event whereby failure or multiple facilities at the same time would be a very small probability of occurrence and over time and not considered in my analysis. An alternative approach is to limit the total amount of customer generation (e.g. 10% of system peak, substation and feeder limitations, etc.).

For Transmission, I am also using the same approach by applying the Forced Outage Rate of 10% to also reflect the very limited unavailability of a customer's facilities. Standby Distribution (wires) Costs

The remaining distribution costs reflect a movement of costs towards more local facilities. The substations and primary feeder facilities provide electric service to many hundreds (thousands) of customers depending on their location on the Company's extensive delivery network.

An underlying consideration is the total contract capacity of these installed facilities versus the actual day-to-day maximum use of any one customer. In my analysis of distribution costs, I considered that the distribution capability will generally support a 25% reserve level while the substation and feeder investments may have additional capacity to accept/tolerate accidental or intermittent load. This application is a systemwide assumption where any one location would possibly exhibit a different reserve level.

Q. COULD YOU PLEASE DISCUSS YOUR EXHIBIT PMN-5?

A. Exhibit PMN-5 details the calculations and assumptions of deriving the Standby pricing based on my previous discussion of the considerations I integrated in the functional costs' calculation.

To begin with, all functional costs shown are based on the Company's filed costs of service results (Exhibit PMN-5, column (a)). Lines 41 and 42 reference the cost of service (Schedule N-2, page 3 of 24). Line 4 (PMN-5) shows the 10% Forced Outage rate utilized for Production and Transmission functional costs for the Standby rate. Applying row 2 percentages to each cost area results in a total costs identification to be used in the Standby calculation on line 20, columns (b) through (d). Lines 22-35 show the unit $\$ / \mathrm{kW}$ charges that would result by using different units of customer demand (12 CP, NCP, billing demand). For purposes of this rate design, we chose the use of the Company's billing demands which are far greater as shown in rows 28 and 29. The resulting proposed pricing is detailed and summarized on lines 33 for Transmission of $2.12 / \mathrm{kW}$ and line 34 for Distribution of $2.44 / \mathrm{kW}$. The infrequent customer access to the Company's supply infrastructure necessitates that Standby rates should reflect a demand pricing level in order to efficiently recover these costs on an equitable basis.

V. SUMMARY AND RECOMMENDATIONS

Q. PLEASE SUMMARIZE YOUR DIRECT TESTIMONY AND YOUR RECOMMENDATIONS IN THIS PROCEEDING.

A. My testimony addresses three topics:

1) Class Cost of Service. I have prepared and submitted class cost of service studies using both pro-forma and booked revenue requirements. This cost of service study
employs well established allocation methods and practices and accurately reflects the costs of serving NorthWestern's customer classes. I recommend that the Commission approve the use of the 12 CP allocation method for allocating production and transmission demand costs. I further recommend that the Commission approve the allocations of distribution and other costs as set forth in Schedule N;
2) Lighting Services. I have provided a study that calculates the Company's costs of serving the various types of Lighting services that it offers. The results of this study allow the Company to identify how to adjust the rates for these services to better reflect the relative costs of providing electric power and energy to Lighting customers. I recommend that the resulting Lighting rates proposed by NWE be approved by the Commission.
3) Rate 34 Standby Rate. I have provided detailed calculations supporting the method used to calculate proposed rates Rate 34 Standby Rate. These calculations provide underlying support for the proposed rates. I recommend that the Commission approve the use of the proposed Standby rate.

Q. DOES THIS CONCLUDE YOUR TESTIMONY?

A. Yes, it does.

PAUL M. NORMAND Principal

Experience in the electric, gas, and water industry includes project management of various cost analyses, engineering system planning and design functions, detailed electric power loss analyses, as well as cost and contract functions for a manufacturer of nuclear equipment. Also, experienced in the analysis and preparation of economic data, revenue requirements and rate design for presentation before state and federal regulatory agencies. Presented expert testimony on behalf of utilities in over 30 applications before regulatory commissions.

EXPERIENCE:

1984 - Present MANAGEMENT APPLICATIONS CONSULTING, INC.
Principal consultant providing consulting services to industry in planning, pricing, and regulation. Extensive experience in analyzing power systems for power loss studies and unbundling issues.

1983-1984 P. M. NORMAND ASSOCIATES
Independent consultant providing services to the utility industry in cost analyses, rate design and expert testimony.

1976-1983 GILBERT/COMMONWEALTH, Reading, Pa. Director, Rate Regulatory Services - Administrative and fiscal responsibility for rate and regulatory services nationally for electric, gas, and water utilities. Additional responsibilities included all marketing, research and development efforts, and contract negotiations for all studies performed by the Regulatory Service Department. Provided consulting service to utilities in project management, personnel staffing, and future development efforts.

Manager, Austin, Texas Office - Responsibility for the overall administrative and business aspects for the department in the Southwest. Duties included the preparation of all aspects of rate cases and PURPA compliance studies.

Senior Management Consultant - Responsibilities included project management of various electric and gas cost-of-service studies and the development of methodologies utilized in the analysis of time-differentiated average and marginal cost studies.

PAUL M. NORMAND / Page 2
(Continued)
Consulting Engineer - Prepared class and time-differentiated cost-of- service studies, revenue requirements exhibits, and expert testimony for formal rate proceedings before regulatory agencies. Performed forecasted ten-year cost-of-service studies by customer classes. Analyzed and prepared transmission (wheeling) rates based on cost-of-service.

Engineer - Derived system demand and energy loss factors and customer load characteristics required for cost-of-service results and related rate schedules.

1975-1976 WESTINGHOUSE ELECTRIC CORPORATION, Pittsburgh, PA Responsible for the procurement of electrical/electronic control equipment and power cables for the nuclear reactor control system. Assisted in the development of procedures for the seismic testing of various electronic equipment related to reactor control.

1971-1974 NEW ENGLAND ELECTRIC SYSTEM, Westborough, Massachusetts Experience from various system assignments in conjunction with formal education. Assigned to the Transmission and Distribution Department with responsibilities in several voltage conversion efforts and system planning. Development of network modeling techniques, load flow, and fault study analyses for the system planning department.

1966-1970 U.S. NAVY
Aviation electronic technician with responsibilities for maintenance and trouble-shooting of electronic communication equipment.

EDUCATION:

B.S.E.E., Electrical Engineering, Northeastern University, 1975
M.S.E.E., Electrical Power Systems, Northeastern University, 1975

Graduate Studies - MBA Program, Lehigh University and Albright College, 1977 to 1980

SOCIETIES:

Institute of Electrical and Electronic Engineers

APPEARANCES AS EXPERT WITNESS:

Federal Energy Regulatory Commission
Arkansas Public Service Commission
Delaware Public Service Commission
Indiana Utility Regulatory Commission
Illinois Commerce Commission
Kansas Corporation Commission
Kentucky Public Service Commission
Louisiana Public Service Commission
Maine Public Utilities Commission
Maryland Public Service Commission
Massachusetts Department of Public Utilities
Missouri Public Service Commission
New Hampshire Public Utilities Commission
New Jersey Board of Public Utilities
New York Public Service Commission
North Carolina Utilities Commission
Ohio Public Utilities Commission
Pennsylvania Public Utility Commission
Texas Public Utilities Commission

PAPERS AND PRESENTATIONS:

"Probability of Dispatch Costing Method for Electric Utility Cost-of-Service Analysis." Co-authored with P. S. Hurley, presented to Edison Electric Institute Rate Research Committee May 4, 1982.
"Costing Strategies under Changing Marketing Goals and Long Term Investment Growth." Presented to Missouri Valley Electric Association (MVEA), Kansas City, MO, November 13, 1991.

I. COST OF SERVICE METHODOLOGY

Through the application of a cost of service model developed specifically for NorthWestern Energy's South Dakota retail electric operations, it is possible to address the revenue requirement elements of rate base, revenue and operating expense and assign or allocate each element to customer classes. This cost of service process consists of the following three steps:
A. Functionalization - The assignment and allocation of costs into one of the following major functions:

- Production
- Transmission
- Distribution
- Customer
- Energy

Each of these major functions was also further assigned to sub-functions such as Distribution Primary within the Distribution function, Meter Reading within the Customer function, etc.
B. Classification - The classification of functional costs into demand, energy and customer components.
C. Allocation - The allocation of the functionalized and classified costs to customer classes using allocation factors developed for each functionalized cost category.

II. FUNCTIONS

There are five major functions in the cost of service study. Descriptions of the functions, sub-functions and costs that are included in each are as follows:
A. Production - Costs that relate to the cost of generation and purchased power.
B. Transmission - Costs that relate to the Transmission lines, substations, and associated facilities that transport power from the Generation source to the Distribution substations.
C. Distribution - Includes the cost of facilities that transport power from the high voltage side of the Distribution substation to the Primary and Secondary Distribution systems. Distribution costs also include the costs of line transformers.

1. Distribution Substations - The costs of substation transformers and switchgear between the Transmission system and the Primary and Secondary conductor systems.
2. Distribution Primary - The costs associated with Primary conductors and devices.
3. Distribution Secondary - The costs associated with Secondary conductors and devices.
4. Distribution Transformers - The costs associated with Distribution Line Transformers.
D. Customer - Includes those costs that are directly related to the change in the number of customers.
5. Services - The costs associated with customer service drops.
6. Meters - The costs associated with the fixed cost of metering.
7. Meter Reading - The costs associated with meter reading.
8. Customer Records - The costs associated with customer records, collections, customer service, and information.
9. Customer Other - The costs associated with customer-related Other Operating revenues.
10. Lighting - Costs directly associated with the Lighting customer class
E. Energy - Includes those costs that are associated with generation fuel costs.

III. COST CLASSIFICATION

All functional costs are further classified into the following three components:

1. Demand - Costs whose main driver is the customer's demand or time of use (kW).
2. Energy - Costs whose main driver is the use of energy (kWh).
3. Customer - Costs whose main driver is the number of customers.

The classification of functional costs into the component costs is as follows:
A. Demand

- Production
- Transmission
- Distribution Substations
- Distribution Primary
- Distribution Secondary
- Distribution Transformers
B. Energy - Generation Fuel Costs

C. Customer

- Services
- Meters
- Meter Reading
- Customer Records \& Information
- Customer Other
- Lighting

IV. FUNCTIONAL ALLOCATION FACTORS

The first step in the cost of service allocation process is the functionalization of costs. All costs are assigned to the functions noted above either directly or by the use of internally developed functional cost allocation factors.

1. Direct Functional Cost Assignment - Certain costs relate solely to one function and can be directly assigned. The categories of costs that contain directly assignable costs are as follows:

- Plant in Service
- Accumulated Depreciation
- Fuel Inventory
- Fuel Charge Revenues and Costs
- External Transmission Revenues and Costs
- Ad Valorem Revenues and Costs
- Wholesale Revenues and Costs
- Steam Sales Revenues
- Yankton Sioux Billing Credits
- O\&M Production Expenses
- O\&M Transmission Expenses
- Meter Reading Expenses
- Customer Records Expenses
- Customer Service \& Information Expenses
- Sales Expenses
- Depreciation Expense
- Plant-Related Regulatory Credits
- North Dakota Coal Tax

2. Internal Functional Allocation - For those costs that do not relate directly to one function, an internal functional allocation factor was developed to allocate the costs. The internal functional allocation factors are the sum of functional costs that have been directly assigned or allocated or both.

The following is a list of the internal functional allocators and the costs they allocate to functions:

FuncLabor - Sum of Total Functionalized Labor Expense
Costs Functionalized:

- General Plant-Related Cost
- Common Plant-Related Cost
- O\&M Administrative \& General Labor-Related Expense
- Intangible Plant-Related Cost
- Prepaid Insurance
- Allowance for Injuries and Damages
- Regulatory Credits Pension Related
- SD Vehicle Tax
- Payroll Taxes

MeterServices - Sum of Meters \& Service Plant Function Costs Functionalized:

- O\&M Distribution Customer Installations Expense
- Customer Deposits

ProdExpXFuel - Sum of O\&M Functional Production Expense Costs Functionalized:

- Production Labor Expense

TransmExp - Sum of O\&M Functional Transmission Expense Costs Functionalized:

- Transmission Labor Expense

DistOpLabXS - Sum of Total Functionalized Distribution Operating Labor Excluding Supervision Costs Functionalized:

- O\&M Distribution Operating Supervision Labor

DistOpSubs - O\&M Distribution Operating Substation Expense

 Costs Functionalized:- O\&M Distribution Operating Substation Labor

DistOpOHLine - O\&M Distribution Overhead Lines Expense

 Costs Functionalized:- O\&M Distribution Operating Overhead Lines Labor

DistOpUGLine - O\&M Distribution Underground Lines Expense Costs Functionalized:

- O\&M Distribution Operating Underground Lines Labor

DistOpLight - O\&M Distribution Operating Lighting Expense Costs Functionalized:

- O\&M Distribution Operating Lighting Labor

DistOpMeter - O\&M Distribution Operating Meter Expense Costs Functionalized:

- O\&M Distribution Operating Meters Labor

DistOpCustin - O\&M Distribution Operating Customer Installation
Expense
Costs Functionalized:

- O\&M Distribution Operating Customer Installation Labor

DistOpOth - O\&M Distribution Operating Other Expense Costs Functionalized:

- O\&M Distribution Operating Other Labor

DistMnLabXS - Sum of Functionalized Distribution Maintenance Labor Excluding Supervision
Costs Functionalized:

- O\&M Distribution Maintenance Supervision Labor

DistMnSubs - O\&M Distribution Maintenance Substation Expense Costs Functionalized:

- O\&M Distribution Maintenance Substation Labor

DistMnOHLine - O\&M Distribution Maintenance Overhead Lines
Expense
Costs Functionalized:

- O\&M Distribution Maintenance Overhead Lines Labor

DistMnUGLine - O\&M Distribution Maintenance Underground Lines
Expense
Costs Functionalized:

- O\&M Distribution Maintenance Underground Lines Labor

DistMnTrans - O\&M Distribution Maintenance Line Transformer Expense Costs Functionalized:
 - O\&M Distribution Maintenance Line Transformers Labor
 DistMnLight - O\&M Distribution Maintenance Lighting Expense Costs Functionalized:
 - O\&M Distribution Maintenance Lighting Labor

DistMnMeter - O\&M Distribution Maintenance Meters Expense Costs Functionalized:

- O\&M Distribution Maintenance Meters Labor

DistMnOther - O\&M Distribution Maintenance Other Expense Costs Functionalized:

- O\&M Distribution Maintenance Other Labor Expense

CustMeterRdg - O\&M Customer Meter Reading Expense Costs Functionalized:

- O\&M Customer Meter Reading Labor

CustRecExp - O\&M Customer Records Expense
Costs Functionalized:

- O\&M Customer Records Labor Expense

CustServInfo - O\&M Customer Service \& Information Expense Costs Functionalized:

- O\&M Customer Service \& Information Labor

AGExpLabor - O\&M Administration \& General Labor-Related Expenses
Costs Functionalized:

- O\&M Administration \& General Labor Expense

AGExpGeneral - O\&M Administrative \& General Expense General Plant
Costs Functionalized:

- O\&M Administrative \& General Labor Expense General Plant

ProdPlant - Sum of Production Plant
Costs Functionalized:

- Production Construction Labor Expense

TransPlant - Total Transmission Plant Costs Functionalized:

- Transmission Construction Labor Expense

DistrPlant - Sum of Functionalized Distribution Plant Accounts Costs Functionalized:

- Distribution Construction Labor Expense

PTDCWIPLab - Sum of Functionalized Production, Transmission and Distribution Construction Labor Expenses Costs Functionalized:

- Contingency Construction Labor Expense

GeneralPIt - Functionalized General Plant Costs Functionalized:

- Accumulated Depreciation Reserve General Plant
- O\&M Administration \& General Expenses - General Plant
- Depreciation Expense General Plant

CommonPlt - Functionalized General Plant Costs Functionalized:

- Accumulated Depreciation Common Plant
- Depreciation Expense General Plant

PTDPIt - Sum of Functionalized Production, Transmission and Distribution Plant
Costs Functionalized:

- Working Capital Materials \& Supplies

TotalPlant - Sum of Functionalized Production, Transmission, Distribution, General and Common Plant Costs Functionalized:

- Other Prepaid Expenses
- Deferred Tax Reserves
- Miscellaneous Service Charges
- Rent Other
- Other Utility Revenues
- O\&M Administrative \& General Expenses - Plant Related
- Amortization Expense

ClaimedRev- Sum of Functionalized Revenue Requirement at the Equalized Claimed Rate of Return Costs Functionalized:

- Rate Case Expenses
- Late Payment Charge Revenues Functionalized on Claimed Revenues
- Uncollectible Accounts Expense Functionalized on Claimed Revenues
- O\&M Administrative and General Expense Revenue Related
- Taxes Other Than Income Taxes Delaware Franchise Taxes
- Taxes Other Than Income Taxes SD Gross Receipts Tax and Increase
- Tax Credits and Adjustments

DistOpLab - Sum of Functionalized Distribution Operations Labor Costs Functionalized:

- O\&M Distribution Operating Supervision Expense

DistSubs - Functionalized Distribution Substation Plant Costs Functionalized:

- O\&M Distribution Operating Substation Expense
- O\&M Distribution Maintenance Substation Expense

DistOHLine - Sum of Functionalized Distribution Overhead Primary and Secondary Lines Plant
 Costs Functionalized:

- O\&M Distribution Operating Overhead Lines Expense
- O\&M Distribution Maintenance Overhead Lines Expense
- Rent from Poles and Contacts

DistUGLine - Sum of Functionalized Distribution Underground Primary and Secondary Lines Plant Costs Functionalized:

- O\&M Distribution Operating Underground Lines Expense
- O\&M Distribution Maintenance Underground Lines Expense

DistLight - Sum of Functionalized Installations on Customer Premises and Street Lighting Plant
Costs Functionalized:

- O\&M Distribution Operating Lighting Expense
- O\&M Distribution Maintenance Lighting Expense

DistMeters - Functionalized Meters Plant Costs Functionalized:

- O\&M Distribution Operating Meters Expense
- O\&M Distribution Maintenance Meters Expense

DistOPExpXS - Sum of Functionalized Distribution Operating Expense excluding Supervision and Other Expenses
Costs Functionalized:

- O\&M Distribution Operating Other Expense

DistMnLab - Sum of Functionalized Distribution Maintenance Labor Costs Functionalized:

- O\&M Distribution Maintenance Supervision Expense

DistTransf - Functionalized Distribution Transformer Plant Costs Functionalized:

- O\&M Distribution Maintenance Transformer Expense

DistMnExpXS - Sum of Functionalized Distribution Maintenance
Expense excluding Supervision and Other Expenses
Costs Functionalized:

- O\&M Distribution Maintenance Other Expense

MetRdgRec - Sum of Functionalized Customer Meter Reading Expense and Customer Records Expense
Costs Functionalized:

- O\&M Customer Accounts Expense Miscellaneous Expenses

LatePayment - Direct assignment of Late Payment charges to the customer classes functionalized on Claimed Revenues
Costs Functionalized:

- Late Payment Charges

Uncollectibles - Direct assignment of Uncollectible Accounts expense to the customer classes functionalized on Claimed Revenues Costs Functionalized:

- Uncollectible Accounts Expense

CashWorkC - Sum of functionalized expenses used in the calculation of cash working capital. Sum of O\&M expense, Taxes Other Than Income, Federal Income Taxes, and Interest Expense Costs Functionalized:

- Cash Working Capital

V. CLASS ALLOCATORS

After all costs have been functionalized, they are then allocated to customer classes using class allocation factors. Below is a listing of the functions and the class allocation factor used for that function.

1. Production

12CPProd - Average 12 Coincident Peaks

- Used to allocate Production-Related Costs to the customer classes

2. Transmission

12CPTrans - Average of Class 12 Coincident Peaks

- Used to allocate Transmission Functional Costs to the customer classes

3. Distribution Substation

NonCP - Non-Coincident Class Peaks

- Used to allocate Distribution Substation Functional Costs to the customer classes

4. Distribution Primary

NonCPPrimary - Non-Coincident Class Peaks

- Used to allocate Distribution Primary Functional Costs to the customer classes served at Primary voltage level and below

5. Distribution Secondary

NonCPSecondary - Average of Non-Coincident Class Peaks and Maximum Diversified Demands

- Used to allocate Distribution Secondary Functional Costs to the customer classes served at Secondary voltage level

6. Distribution Transformers

DemTransf - Average of Non-Coincident Class Peaks and Maximum Diversified Demands

- Used to allocate Distribution Transformer Functional Costs to the customer classes

7. Services

Services - Maximum Diversified Class Demands

- Used to allocate Distribution Services Functional Costs to the customer classes

8. Meters

MeterCost - Direct assignment of Meter Costs to customer classes

- Used to allocate Distribution Meter Costs to the customer classes

9. Customer Meter Reading

MeterRdg - Direct assignment of Meter Reading Costs to customer classes

- Used to allocate Meter Reading Functional Costs to the customer classes

10. Customer Records

CustRecords - Direct assignment of Customer Records and Billing Costs to customer classes

- Used to allocate Customer Records Functional Costs to the customer classes

11. Customer Other

Customer - Allocator to customer classes based on the number of customers

- Used to allocate Other Customer Functional Costs to the customer classes

12. Street Lighting

Lighting - Direct assignment of Lighting Costs to customer classes

- Used to assign Lighting Functional Costs to the Lighting classes

13. Energy Related

Energy - kWh Sales Allocator

- Used to allocate Energy Functional Costs to the customer classes

14. Fuel

Fuel - Direct assignment of offsetting fuel clause costs and revenues to customer classes

- Used to assign offsetting fuel costs and revenues to the customer classes

15. External Transmission

ExtTransm - Direct assignment of offsetting External Transmission clause costs and revenues to the customer classes

- Used to assign offsetting external transmission costs and revenues to the customer classes

16. Ad Valorem

AdValorem - Direct assignment of offsetting Ad Valorem clause costs and revenues to the customer classes

- Used to assign offsetting Ad Valorem costs and revenues to the customer classes

VI. CUSTOMER CLASSES

The individual customer classes with rates and grouping categories recognized in the cost of service study are as follows:

Total Residential

Residential Basic 10
Residential with Space Heating 11
Residential Space Heating and Cooling 14
Residential Dual-Fuel 15

Total Irrigation

Irrigation Interruptible IRR 16 \& 18
Irrigation IRR 17

Total Commercial

Commercial General Service 21
Commercial Separate Metered Space Heating 23
Commercial Space Heating \& Cooling 24
Commercial All-Inclusive 25

Total Commercial \& Industrial

Commercial \& Industrial 33
Large Commercial \& Industrial 34

Total Municipal

Municipal Pumping 41
Total Lighting
Lighting Reddy-Guard 19
Highway Street \& Area Lighting 56

Controlled Off-Peak
Controlled Off Peak 70

NorthWestern Corporation dba NorthWestern Energy
Monthly System Peaks
South Dakota Electric
Test Year Ended December 31, 2022

Line					
No.		Date	Hour	Day	Megawatts
1	January	1/6/2022	800	Thursday	307.2
2	February	2/22/2022	1000	Tuesday	319.3
3	March	3/11/2022	900	Friday	281.3
4	April	4/14/2022	1000	Thursday	248.2
5	May	5/12/2022	1600	Thursday	253.9
6	June	6/20/2022	1600	Monday	322.8
7	July	7/18/2022	1600	Monday	337.9 System Peak
8	August	8/5/2022	1600	Friday	336.7
9	September	9/1/2022	1700	Thursday	303.0
10	October	10/18/2022	800	Tuesday	225.2
11	November	11/17/2022	1800	Thursday	264.7
12	December	12/22/2022	1800	Thursday	313.9
	Average Peak December to March				305.4
	Average Peak June to September				325.1
	Percent Winter of Summer				94\%

NWE SD LIGHTING COST ANALYSIS - 12/31/22

TABLE OF CONTENTS

TABLE \# DESCRIPTION

1 RATE 19-U10 RESIDENTIAL REDDY-GUARD SUMMARY RESULTS
2 RATE 19-U20 COMMERCIAL REDDY-GUARD SUMMARY RESULTS
3 RATE 19-U30 PUBLIC LIGHTING SUMMARY RESULTS
4 RATE 56-U30 DISTRIBUTION POLE SUMMARY RESULTS
5 RATE 56 - U30 METAL POLE SUMMARY RESULTS
6 RATE 56-U30 WOOD POLE SUMMARY RESULTS
7 COST CALCUATION DETAILS SUPPORTING TABLES 1-6
8 FUNCTIONAL SYSTEM COSTS SUMMARY PER KWH
9 NET PLANT AND FUNCTIONAL COST DEVELOPMENT
10 FUNCTIONAL GROSS PLANT, ACCUMULATED DEPRECIATION, \& NET PLANT

FUNCTIONAL NET OPERATING EXPENSE DETAIL AND UNIT COSTS (CUSTOMER OWNED)
LIGHTING INSTALLED COST ESTIMATES
LIGHTING SCHEDULE RESULTS FOR GROSS PLANT DERIVATION
KWH SALES AND UNIT COUNT
TABLE 14 - LIGHT-EMITTING DIODE (LED) RATE DEVELOPMENT

WORKPAPERS

```
WP 1 SYSTEM OVERALL REVENUE REQUIREMENT DETAILS
WP 2 LIGHTING SCHEDULE RATE DETAIL
WP 3 COMPANY BURNING HOURS
WP4 NET OPERATING EXPENSE FUNCTIONAL DETAIL
```

NWE SD LIGHTING COST ANALYSIS - 12/31/22
TABLE 1 - RATE 19 - U10 RESIDENTIAL REDDY-GUARD SUMMARY RESULTS

19-U10 RESIDENTIAL REDDY-GUARD SUMMARY RESULTS

$\begin{aligned} & \text { Line } \\ & \text { No. } \end{aligned}$	A	B	c	D	E	F	G	H	1	J	k	L	M	N	\bigcirc	P	Q	R	s
1	c	metered allocated costs results																	
2 3 4	Rev Code		Watts	ANNUAL UNITS	ANNUALKWH	$\begin{gathered} \text { PROD } \\ \text { (Excl Fuel) } \end{gathered}$	trans	$\begin{gathered} \text { DIST } \\ \text { (WO LTG) } \end{gathered}$	$\begin{aligned} & \text { TOT PTDG } \\ & \text { NOE } \\ & \$ 0.00000 \end{aligned}$	$\begin{gathered} \text { LIGHTING } \\ \text { NOE } \\ \$ 0.03355 \end{gathered}$	LIGHTING PLANT \$0.04858	COST BASED CALCULATED --- MON	CAPPED PROPOSED HLY CHARGES	Existing	PERCENT INCREASE/ DECREASE	calculated ANNUAL revenues	PROPOSED ANNUAL revenues	CURRENT ANNUAL revenues	INCR/DECR ANNUAL REVENUES
5												Cap Adjustment Factors							
	MeteredRR100											(0.21)	0.21						
7		HPS	35		0	\$0.00	\$0.00	\$0.00	\$0.00	\$0.47	\$0.68								
8				0		\$0.00	\$0.00	\$0.00	\$0.00	\$0.47	\$0.68	\$1.16	\$4.39	\$3.63	21.01\%	\$0.00	\$0	\$0	\$0
9	RR101	HPS	50		1,186	\$0.00	\$0.00	\$0.00	\$0.00	\$39.79	\$57.61								
10	RR102			60		\$0.00	\$0.00	\$0.00	\$0.00	\$0.66	\$0.96	\$1.62	\$4.39	\$3.63	21.01\%	\$97.40	\$264	\$219	\$44
11		HPS	100		27,616	\$0.00	\$0.00	\$0.00	\$0.00	\$926.59	\$1,341.59								
12				557		\$0.00	\$0.00	\$0.00	\$0.00	\$1.66	\$2.41	\$4.07	\$6.05	\$5.00	21.01\%	\$2,268.18	\$3,370	\$2,811	\$559
13	RR103	HPS	150		225,275	\$0.00	\$0.00	\$0.00	\$0.00	\$7,558.58	\$10,943.88								
14				3,233		\$0.00	\$0.00	\$0.00	\$0.00	\$2.34	\$3.39	\$5.72	\$7.12	\$5.88	21.01\%	\$18,502.46	\$23,004	\$19,203	\$3,800
15	RR104	HPS	250		8,630	\$0.00	\$0.00	\$0.00	\$0.00	\$289.55	\$419.23								
16				80		\$0.00	\$0.00	\$0.00	\$0.00	${ }^{\$ 3.62}$	\$5.24	\$8.86	\$9.24	\$7.64	20.94\%	\$708.77	\$739	\$616	\$123
18	RR105	HPS	400	132	21,933	\$0.00	\$0.00	\$ $\$ 0.00$	\$0.00	\$735.91 $\$ 5.58$	\$1,065.51 $\$ 8.07$	\$13.65	\$9.74	\$8.05	21.01\%	\$1,801.42	\$1,286	\$1,072	\$214
19	RR106	HPS	1000		0	\$0.00	\$0.00	\$0.00	\$0.00	\$13.08	\$18.94								
20				0		\$0.00	\$0.00	\$0.00	\$0.00	\$13.08	\$18.94	\$32.03	\$18.05	\$14.92	21.01\%	\$0.00	\$0	\$0	\$0
21																			
22	RR110	MV	175		494,002	\$0.00	\$0.00	\$0.00	\$0.00	\$16,575.04	\$23,998.60								
23 24	RR111	MV	250	6,827	3,630	\$0.00	\$0.00	\$0.00	\$0.00	\$2.43	\$3.52	\$5.94	\$2.80	\$2.31	21.01\%	\$40,573.64	\$19,084	\$15,933	\$3,150
25				36		\$0.00	\$0.00	\$0.00	\$0.00	\$3.38	\$4.90	\$8.28	\$3.49	\$2.88	21.01\%	\$298.15	\$125	\$105	\$21
26	RR112	MV	400		0	\$0.00	\$0.00	\$0.00	\$0.00	\$5.33	\$3.52								
				0		\$0.00	\$0.00	\$0.00	\$0.00	\$5.33	\$3.52	\$8.84	\$4.39	\$3.63	21.01\%	\$0.00	\$0	\$0	\$0
28	RR113	MV	1000		0	\$0.00	\$0.00	\$0.00	\$0.00	\$12.76	\$3.52								
29				0		\$0.00	\$0.00	\$0.00	\$0.00	\$12.76	\$3.52	\$16.27	\$8.59	\$7.10	21.01\%	\$0.00	\$0	\$0	\$0
30 31	RR114	MH	175		0	\$0.00	\$0.00	\$0.00	\$0.00	\$2.30	\$3.34								
32				0		\$0.00	\$0.00	\$0.00	\$0.00	\$2.30	\$3.34	\$5.64	\$3.30	\$2.73	21.01\%	\$0.00	\$0	\$0	\$0
33	RR115	MH	250		2,332	\$0.00	\$0.00	\$0.00	\$0.00	\$78.23	\$113.27								
34				24		\$0.00	\$0.00	\$0.00	\$0.00	\$3.26	\$4.72	\$7.98	\$7.68	\$6.35	21.01\%	\$191.50	\$184	\$158	\$26
35	RR116	MH	400		0	\$0.00	\$0.00	\$0.00	\$0.00	\$5.15	\$7.45								
36				0		\$0.00	\$0.00	\$0.00	\$0.00	\$5.15	\$7.45	\$12.60	\$9.74	\$8.05	21.01\%	\$0.00	\$0	\$0	\$0
$\begin{aligned} & 37 \\ & 38 \end{aligned}$	RR125	LED	55		241	\$0.00	\$0.00	\$0.00	\$0.00	\$8.09	\$11.71								
39				13		\$0.00	\$0.00	\$0.00	\$0.00	\$0.62	\$0.90	\$1.52	\$8.72	\$7.21	21.01\%	\$19.80	\$113	\$99	\$15
	RR126	LED	60		1,246	\$0.00	\$0.00	\$0.00	\$0.00	\$41.81	\$60.54								
				62		\$0.00	\$0.00	\$0.00	\$0.00	\$0.67	\$0.98	\$1.65	\$9.51	\$7.86	21.01\%	\$102.35	\$590	\$356	\$234
	RR160	LED	126		42	\$0.00	\$0.00	\$0.00	\$0.00	\$1.42	\$2.05								
43				1		\$0.00	\$0.00	\$0.00	\$0.00	\$1.42	\$2.05	\$3.47	\$13.87	\$11.47	21.01\%	\$3.47	\$14	\$11	\$2
	RR170	LED	189		63	\$0.00	\$0.00	\$0.00	\$0.00	\$2.12	\$3.08								
45 46				1		\$0.00	\$0.00	\$0.00	\$0.00	\$2.12	\$3.08	\$5.20	\$20.81	\$17.20	21.01\%	\$5.20	\$21	\$10	\$11
	total			11,026	786,196			REV REQ	\$0	\$26,418	\$38,193					\$64,572	\$48,794	\$40,593	\$8,200
								СНеСК	\$0	\$26,379	\$38,193	\$64,572				sent Revenues	\$40,593		
									\$0	\$39	\$0						\$8,200		
	Difference due to no kWh in light units								\$0	\$39									
53																			
54												Proposed Total Rate 19 U 10 Current Total Rate 19 U10					\$213,492		
55																	\$173,156		
56																Increase	\$40,336		
57	NOTES:																		
58	(1) C	Curren	monthly ch	harge exclu	des fuel, ad va	valorem, and tran	mission by of	ers charge.											
	${ }^{(2)}$ Me		etered plant co	wits per lamp	are not include	ed in metered ras	s since they	are metered and	d included with	he customer;	service bill.								
60 61		Reven	Codes wi	with no annua	al kWh calcula	de monthly char	es based on	Wh/Mo rating	from Table 7										

NWE SD LIGHTING COST ANALYSIS - 12/31/22
TABLE 2-RATE 19 - U20 COMMERCIAL REDDY-GUARD SUMMARY RESULTS

Line No.	A	B	c	D	E	F	G	H	1	J	k	L	M	N	0	P	Q	R	s
1	A	BILLIN	statisticter																
2									scaled	PLANT			anNuAL	Current					
3 4	Rev Code		Watts			Lumens	кwh/MO		TOT \$ INSTALLE	$\begin{aligned} & \text { NET } \\ & \text { PLANT } \end{aligned}$	ANNUAL KWH	ANNUAL UNITS	BASE REVENUES	MONTHLY					
5																			
6	Unmetere																		
7	RC001	HPS	35			4,095	14.07		\$0	\$0	,	0	\$0	\$4.00000					
8	RCOO2	HPS	50 100			5,850 11700	19.77		\$102	$\$ 38$ $\$ 6.526$	168 76.513	1568	$\$ 38$ $\$ 11710$	\$4.15000					
9	RC003	HPS	100			11,700	49.58		\$161	\$6,526	76,513	1,568	\$11,710	\$7.43000					
10	RC004	HPS	150			17,550	69.68		\$179	\$31,217	490,128	7,158	\$56,008	\$7.75000					
11	RC005	HPS	250			29,250	107.87		\$280	\$47,296	${ }_{623,563}$	5,854	\$65,140	\$10.96000					
12	RC006	HPS	400 1000			46,800 117,000	166.16 389.94		\$286 $\$ 391$	$\$ 37,093$ $\$ 1,024$	783,524 32,427	4,827 84	$\underset{\substack{\text { \$63,677 } \\ \$ 2,318}}{ }$	\$12.94000 $\$ 27.07000$					
14	RC007	HPS	1000			117,000	389.94		\$391			84		\$27.07000					
15	RC010 M	MV	175			8,750	72.36		\$234	\$59,925	738,513	10,383	\$51,623	\$4.92000					
16	RC011 M	MV	250			12,500	100.84		\$251	\$3,288	49,067	493	\$3,085	\$6.24000					
17	RC012	MV	400			20,000	158.79		\$295	\$1,216	22,730	145	\$1,365	\$9.26000					
18	RC013	MV	1000			50,000	380.23		\$0	\$0		0		\$17.56000					
19	RC014	MH	175			15,225	68.68		\$0	\$0		0		\$5.05000					
21	RC015	MH	250			21,750	97.15		\$327	\$8,704	92,001	861	\$5,531	\$6.43000					
22	RC016 N	MH	400			34,800	153.43		\$365	\$25,543	425,990	2,584	\$24,254	\$9.43000					
23	RC017	MH	1000			87,000	380.23		\$835	\$8,436	174,998	469	\$8,434	\$17.59000					
24																			
${ }_{26}^{25}$	RC026	LED	60 66				20.10 22.11		\$224 $\$ 224$	$\$ 43,354$ $\$ 84$	20,926 ${ }_{211}$	839 10	$\$ 5,249$ $\$ 101$	$\$ 8.88000$ $\$ 9.76800$					
27	RC035	LED	73				24.46		\$224	\$252	397	15	\$157	\$9.34400					
28	RC060	LED	126				42.21		\$274	\$6,362	5,150	103	\$1,084	\$13.60800					
29	RCO70	LED	189				63.32		\$352	\$16,064	17,756	239 57	\$3,937	\$20.41200 $\$ 2934800$					
$\begin{aligned} & 30 \\ & 31 \end{aligned}$	RC080	LED	319				106.87		\$610	\$1,826	6,295	57	\$1,688	\$29.34800					
32									total	\$298,249	3,560,355	35,698	\$305,399						
33									CHECK TOTAL	\$298,249	3,560,355	35,698	\$305,399						
34 35																			
36																			
37 38									$\begin{aligned} & \text { SCALED } \\ & \text { TOT } \end{aligned}$	PLANT NET	ANNUAL	ANNUAL	ANNUAL BASE	CURRENT MONTHLY					
39	Rev Code		Watts			Lumens	KWH/MO		INSTALLED	PLANT	KWH	UNITS	revenues	CHARGE (1)					
41	Metered																		
42	RC100	HPS	35			4,095	14.07		\$0	so	0	0	\$0	\$3.63					
43	RC101	HPS	50			5,850	19.77		\$102	\$687	4,269	216	\$795	\$3.63					
44	RC102	HPS	100			11,700	49.58		\$161	\$3,082	32,326	652	\$3,291	\$5.00					
45	RC103	HPS	150			17,550	69.68		\$179	\$13,465	168,347	2,416	\$14,389	\$5.88					
46	RC104	HPS	250			29,250	107.87		\$280	\$26,427	350,685 487513	3,251	\$25,131	\$7.64					
47	RC105	HPS HPS	400 1000			46,800 117,000	166.16 389.94		\$286 $\$ 391$	\$26,051 $\$ 878$	487,513 28,076	2,934 72	\$ $\begin{array}{r}\text { \$23,834 } \\ \$ 1,087\end{array}$	$\$ 8.05$ $\$ 14.92$					
49	RC106																		
50	RC110	MV	175			8,750	72.36		\$234	\$4,475	295,012	4,077	\$9,518	\$2.31					
51	RC111	MV	250			12,500	100.84		\$251	\$18,882	34,687	344	\$1,004	\$2.88					
52	RC112 ${ }^{\text {RC113 }}$	MV	400 1000			20,000 50,000	158.79 380.23		\$295	\$27,855	14,767 4,563	93 12	$\$ 342$ $\$ 86$	\$3.63 $\$ 7.10$					
54																			
55	RC114	MH	175			15,225	68.68		\$0	\$0		0		\$2.73					
56	RC115	MH	250			21,750	${ }^{97.15}$		\$327	\$4,536 $\$ 11511$	46,243	476 40	$\$ 3,048$ $\$ 8.154$	\$6.35					
57 58	RC116 RC117	MH	400 1000			34,800 87,000	153.43 22.11		\$365 $\$ 224$	\$11,611 $\$ 420$	153,890 1,327	1,003 60	$\$ 8,154$ $\$ 905$	$\$ 8.05$ $\$ 17.56$					
59																			
60	RC126 L	LED	60				20.10		\$224	\$1,092	442	22	\$147	\$7.86					
61	RC130	LED	66 126				22.11		\$274 $\$ 352$	\$205 $\$ 658$	$\begin{array}{r}531 \\ 253 \\ \hline 53\end{array}$	24 6	\$210 $\$ 41$	$\$ 8.65$ $\$ 1147$					
63	RC170		126 189				42.21 63.32		\$352	\$658	253 380	${ }_{6}^{6}$	$\$ 41$ $\$ 75$						
64																			
65									TOTAL	\$179,499	1,623,312	15,664	\$92,057						
66 67									CHECK TOTAL	\$179,499	1,623,312	15,664	\$92,057						
69	NOTES:																		
70		Curren	monthly ch	ex	el, a	, and transm	ssion by others												
71																			

NWE SD LIGHTING COST ANALYSIS - 12/31/22
TABLE 2 - RATE 19 - U20 COMMERCIAL REDDY-GUARD SUMMARY RESULTS

NWE SD LIGHTING COST ANALYSIS - 12/31/22
TABLE 2-RATE 19 - U20 COMMERCIALL REDDY-GUARD SUMMARY RESULTS

NWE SD LIGHTING COST ANALYSIS - 12/31/22
TABLE 3-RATE 19-U30 PUBLIC LIGHTING SUMMARY RESULTS

NWE SD LIGHTING COST ANALYSIS - 12/31/22
TABLE 3 - RATE 19- U30 PUBLIC LIGHTING SUMMARY RESULTS

NWE SD LIGHTING COST ANALYSIS - 12/31/22
LE

- RATE 19 - U30 PUBLIC LIGHTING SUMMARY RESULTS

NWE SD LIGHTING COST ANALYSIS - 12/31/22
TABLE 6 - RATE 56 - U30 WOOD POLE SUMMARY RESULTS

NWE SD LIGHTING COST ANALYSIS - $12 / 31 / 22$
TABLE 6 - RATE 56 - U30 WOOD POLE SUMMARY RESULTS

NWE SD LIGHTING COST ANALYSIS - $12 / 31 / 22$
7 - COST CALCUATION DETAILS SUPPORTING TABLES 1-6

\# UNITS YR END	BRACKET \$	FIXTURE \$	TOTAL $\$$ INSTALLED
	\$76	${ }_{\text {\$70 }}$	\$0
1	\$76	\$107	\$183
108	\$76	\$213	\$290
466	\$76	\$245	\$321
451	\$76	\$427	\$503
346	\$76	\$438	\$514
7	\$115	\$587	\$702
683	\$76	\$344	\$421
35	\$76	\$374	\$451
11	\$76	\$454	\$530
0	\$115	\$645	\$0
0	\$76	\$479	\$0
71	\$76	\$512	\$588
187	\$76		\$655
27	\$115	\$1,384	\$1,499
516	\$153	\$250	\$403
1	\$153	\$250	\$403
3	\$153	\$250	\$403
62	\$153	\$339	\$492
122	\$153	\$4479	\$1032
$\stackrel{8}{3105}$	Total ${ }^{\$ 153}$	\$942	\$1,095

Mercury Vapor
Other

3,560,355

$\underset{\substack{11,027 \\ 24,677}}{\substack{5560,074 \\ 524,325}}$

Q	R	s
	annual	CURRENT
ANNUAL	BASE	MONTHLY
UNITS	REVENUES	CHARGE (1)
0	\$0	\$4.00
9	\$38	\$4.15
1,568	\$11,710	\$7.43
7,158	\$56,008	\$7.75
5,854	\$65,140	\$10.96
4,827	\$63,677	\$12.94
84	\$2,318	\$27.07
10,383	\$51,623	\$4.92
493	\$3,085	\$6.24
145	\$1,365	\$9.26
		\$17.56
		\$5.05
861	\$5,531	\$6.43
2,584	\$24,254	\$9.43
469	\$8,434	\$17.59
839	\$5,249	\$8.88
10	\$101	\$9.77
15	\$157	\$9.34
103	\$1,084	\$13.61
239	\$3,937	\$20.41
57	\$1,688	\$29.35
35,698	\$305,399	
11,021		
24,677	\$249,325	

NWE SD LIGHTING COST ANALYSIS- 12131222
-COST CALCUATION DETALS SUPPORTING TABLES $1-6$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline F \& G \& н \& 1 \& J \& к \& L \& m \& N \& \(\bigcirc\) \& P \& Q \& R \& s \\
\hline Lumens \& кWHMO \& \(\underset{\substack{\text { \# UNITS } \\ \text { YRND }}}{ }\) \& \& FIXTURE \& EYE \& \begin{tabular}{l}
TOTAL \$ \\
INSTALLE
\end{tabular} \& NET PLANT \& EStimated PLT COSTS \& SCALED TO GROSS PLT
COSTS \& SCALED TOT \$ INSTALLE \& ANNUAL
KWH \& ANNUAL \& \[
\begin{gathered}
\text { ANAUAL } \\
\text { REVENUESES }
\end{gathered}
\] \& \[
\begin{gathered}
\text { CURRENT } \\
\text { CMONTHE } \\
\text { CHAREEEK } \\
\text { Sil }
\end{gathered}
\] \\
\hline 5,850 \& \({ }_{4.95}^{24.79}\) \& \& \$1,895 \& \({ }_{5386}\) \& S0 \& so so \& \& \& \({ }^{50}\) \& \({ }_{2,486}\) \& \({ }_{0}^{48}\) \& \({ }_{\text {\$19 }}^{\text {so }}\) \& (\(\begin{gathered}\text { s0.73 } \\ \text { S10.07 }\end{gathered}\) \\
\hline 11,700 \& 49.58 \& \& \& \& \& \& \& - \({ }_{\text {s }}\) \& \& \({ }_{4}^{5.548}\) \& 107 \& \({ }_{515161}^{5161}\) \& S11.48 \\
\hline \({ }^{17,550}\) \& \({ }_{69.68}^{6988}\) \& \({ }_{92}^{515}\) \& \$1,895 \& S447 \& \$2,312 \& \({ }^{\text {S337,504 }}\) \& \$1,190,579 \& \$977,429 \& \$1,99880 \& 411,947
88,496 \& \({ }_{1}^{5,104}\) \& \$118,368 \& \$ \({ }_{\text {\$19.39 }}\) \\
\hline 29,250 \& 107.87 \& \({ }_{6}^{637}\) \& \$1,895 \& 5599 \& S2,494 \& \$450,335 \& \$1,588,603 \& \$1,304,195 \& \$2,047 \& 848,248 \& 7,519 \& \$173,353] \& \$22.01 \\
\hline \({ }_{4}^{29,2,800}\) \& \({ }_{1}^{107.87}\) \& \({ }_{444}^{17}\) \& \$1,895 \& 5612 \& S2,507 \& \$315,519 \& \$1,113,027 \& 5913,761 \& 52,958 \& 993,995 \& \({ }_{5}^{1,245}\) \& \$133,346 \& ¢ 523.19 \\
\hline \({ }^{46,8800}\) \& (166.16 \& 562 \& \& \& s0 \& \& so \& \& \& 1,163,436 \& 6,750 \& \$32,386 \& S4.76 \\
\hline 117,000 \& 389.94
389.94 \& \& \$1,895 \& \$1,065 \& \$0 \& \& so \& s0 \& \$0 \& \& \({ }_{0}^{0}\) \& so \& \({ }_{\text {S }}^{\text {S }}\) \\
\hline 8,750 \& \({ }^{72} 2.36\) \& \& \$1,895 \& 5512 \& s0 \& \& s0 \& so \& so \& \& 0 \& so \& \$11.98 \\
\hline 8, 12,500 \& \(\begin{array}{r}12.36 \\ 100.84 \\ \hline\end{array}\) \& 29 \& \$1,895 \& \$540 \& S2,435 \& \$20,920 \& S70,624 \& S57,980 \& \$1,999 \& 34,404 \& 322 \& 55.819 \& S2.14 \\
\hline 12,500 \& 100.84
158,
158 \& 0 \& \& \& S, s0 \& 50 \& 50 \& S14.40 \& \({ }_{\text {S20 }}^{50}\) \& , \& 0 \& so \& \\
\hline \({ }_{20,000}^{20,000}\) \& 155.79

1589 \& 7 \& \$1,895 \& \$618 \& \$2,513 \& 80 \& \$17,589 \& \$14,440 \& S2,063 \& 12,661 \& 75 \& 507 \&

\hline 50,000 \& ${ }_{380.23}^{158.9}$ \& 0 \& \$1,895 \& \$831 \& so \& ${ }_{50}$ \& ${ }_{50}$ \& s0 \& so \& \& ${ }_{0}$ \& so \& S24.99

\hline 50,000 \& ${ }_{380.23}$ \& \& \& \& \$0 \& so \& \$0 \& so \& ${ }_{\$ 0}$ \& 0 \& 0 \& so \& ${ }_{58.80}$

\hline \multirow[t]{17}{*}{$$
\begin{gathered}
21,750 \\
2,0,00 \\
8,750 \\
\hline
\end{gathered}
$$} \& ¢88.68 \& \& \$1,895 \& \& \& \& \& \& \& - $\begin{aligned} & 1,353 \\ & 12.23\end{aligned}$ \& \& \$5299 \& \$19.20

\hline \& 153.43 \& ${ }_{0}^{6}$ \& \$1,895 \& ${ }_{5612}$ \& ${ }_{\text {S2,513 }}$ \& 54, ${ }_{\text {s }}$ \& \$15,077 ${ }_{\text {S0 }}$ \& \$12,377 s0 \& ${ }_{\substack{\text { S2,063 } \\ 80}}$ \& ${ }^{12,203}$ \& ${ }_{0}^{70}$ \& ${ }_{\text {s1, 559 }}^{\text {s0 }}$ \& ${ }_{\substack{\text { s20.55 } \\ \text { S21.55 }}}^{\text {S }}$

\hline \& 14.07 \& \& so \& ${ }_{\$ 153}$ \& ${ }_{\text {S153 }}$ \& ${ }_{\text {S433 }}$ \& S153 \& \$126 \& ${ }_{\$ 126}$ \& ${ }_{132}$ \& 9 \& ${ }_{\text {S } 231}$ \& ${ }_{5}^{522.54}$

\hline \& 17.09
23.99 \& ${ }_{34}^{4}$ \& \& \& \$153 \& \& \$612 \& ${ }_{\text {S502 }}$ \& ${ }_{\text {\$126 }}$ \& 10,171 \& ${ }_{408}^{488}$ \& \&

\hline \& ${ }^{24.46}$ \& 2 \& s0 \& ${ }_{\text {S153 }}$ \& ${ }_{\text {S153 }}$ \& ${ }_{587}$ \& ${ }^{5306}$ \& ${ }_{5}^{5251}$ \& ${ }_{\$ 126}$ \& 548 \& 22 \& ${ }_{5} 5524$ \& ${ }_{\text {s22.56 }}$

\hline \& 34.51
36.18 \& 20 \& \& \& \$153 \& ${ }_{5807}$ \& ${ }_{\text {s3, }}^{50} 5$ \& \$2,510 \& \$126 \& ${ }_{\substack{8,477 \\ 2,67}}^{\text {c, }}$ \& 233
72 \& 5,5994 \&

\hline \& ${ }_{42.21}$ \& 7 \& so \& \$153 \& \$153 \& \$303 \& \$1,070 \& S879 \& \$126 \& ${ }_{\text {2, } 640}$ \& 11 \& \$266 \& ${ }_{\text {¢ } 27.58}$

\hline \& 51.59 \& ${ }_{4}^{24}$ \& so \& \$153 \& \& \& \& s50 \& \& 156,588 \& 2,890 \& \&

\hline \& 69.01 \& 40 \& \& \$153 \& s153 \& st,734 \& ${ }_{\text {s6, }}^{50}$ \& 55,021 \& s120 \& 20,139 \& ${ }_{0}$ \& s11,596 \&

\hline \& ${ }_{893}^{89.78}$ \& ${ }_{9}$ \& \& \& - ${ }^{50}$ \& 530 \& S0 \& ${ }^{\text {s0 }}$ \& \$190 \& ${ }^{2,263}$ \& \& ${ }_{5} 57$ \&

\hline \& 103.52 \& 12 \& \& \$153 \& ¢153 \& \& \$1835 \& S1, \& ${ }_{\text {S }}$ \& ${ }_{15,563}$ \& 148 \& cis \&

\hline \& 106.87 \& 2 \& so \& \$153 \& \$153 \& ${ }_{587}$ \& ${ }_{\text {S306 }}$ \& ${ }_{\text {\$251 }}$ \& \$126 \& 2,696 \& 24 \& \$1,043 \& \$42.90

\hline \& \& \multicolumn{3}{|c|}{\multirow[t]{3}{*}{2,706 Total
1,732 Company Owned
2,74 Cuttomer Owned

2,706 Check}} \& \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \$ 1,137,522 \\
& \$ 1,177.52 \\
& \$ 1,137,522 \\
& \$ 1
\end{aligned}
$$} \& \multirow[b]{3}{*}{$\$ 4,012,726$

$\$ 4,012,526$} \& \multirow[t]{3}{*}{| ${ }_{\$ 3,294,326}^{93,294,36}$ |
| :--- |
| $\$ 3,294,326$
 RATIO |} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 31,3808 \\
& 19.756 \\
& 19,572
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& \$ 506,574 \\
& \$ 464,284 \\
& \$ 41,289 \\
& \hline
\end{aligned}
$$
\]} \& \multirow[t]{3}{*}{}

\hline \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& 47,065 \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& 19, 1939 \& S457 880
$\$ 47289$ \&

\hline
\end{tabular}

NWE SD LIGHTING COST ANALYSIS - $12 / 31 / 22$
TABLE 8 - FUNCTIONAL SYSTEM COSTS SUMMARY PER KWH
Distribution
Substations \& Primary
Secondary \& Line Transfr
Total Distribution
Services, Meters, \& Meter Rdg
treet Lighting
Customer Rec \& Other
Energy (non fuel)
Fuel
Subtotal Rate 19 (Excl Fuel) - COS Rev
Subtotal Rate 19 (Excl Fuel) - COS Rev
Subtotal Rate 19 (Excl Fuel) - Input Rev
Subtotal Rate 19 (Excl Fuel) - Proposed Rev
B
CURRENT
CURREN

$\$ 16,728$
$\$ 68,951$
$\$ 41,180$
$\$ 41,18$
$\$ 110,13$
$\$ 110,131$
$\$ 20$
$\$ 269,313$
$\$ 269,313$
$\$ 105,156$

C
PROPOS
REVEN
(Targ
$\begin{array}{rr}\$ 0 & \$ 0 \\ \$ 570,629 & \$ 618,123\end{array}$
618,123
\$695,908
Highway, Street \& Area Lighting (Rate 56 Production
Transmission Distribution
Substations \& Primary
Secondary \& Line Transfrs
Total Distribution
Services, Meters, \& Meter Rdg
Customer Rec \&
Energy (non fuel)
Fuel
Fuel
Subtotal Rate 56 (Excl Fuel) - COS Rev Subtotal Rate 56 (Excl Fuel) - Input Rev
Subtotal Rate 56 (Excl Fuel) - Propos Subtotal Rate 56 (Excl Fuel) - Proposed Rev

Total Lighting - COS Revenue
Total Lighting - Input Revenue
Total Lighting - Proposed Lighting Study Rev
SUMMARY OF CALCULATED COSTS PER KWH

DATA SOURCE:

PRODUCTION

TRANSMISSION
distribution
REDDY LIGHTING (Rate 19) - UNMETERED
HIGHWAY, ST, \& SGNL LTG (Rate 56)
SUBTOTAL \qquad $\$ 0.14953$
$\$ 0.11897$

RATE 56 PLANT TABLE 9	RATE 5 NOE TABLE
$\$ 0.01541$	$\$ 0.00$
$\$ 0.00594$	$\$ 0.00$
$\$ 0.02098$	$\$ 0.01$
$\$ 0.00000$	$\$ 0.00$
$\$ 0.10720$	$\$ 0.133$
$\$ 0.14953$	$\$ 0.1$

KWH PROPOSED
(COS) REVEN

$5,060,641$	
$5,060,641$	$\$ 0.01$
50.0040	

$\$ 0.00407$ \$77,767
$5,060,641 \quad \$ 0.01530 \quad \$ 77,443$

$5,060,641$	$\$ 0.00926$	$\$ 77,443$
$\$ 46,856$		

$5,060,641 \quad \$ 0.00000 \quad$| \$124,299 |
| :--- |
| $\$ 0$ |

$5,060,64$	$\$ 0.05630$	$\$ 284,905$
$5,060,641$	$\$ 0.02152$	$\$ 108,917$

$\$ 0.00033$ \$1,665

$\$ 0.12214$ System Charges per kWh \quad| $\$ 0$ |
| :--- |
| $\$ 618,123$ |

$11,867,293$	$\$ 0.01796$	$\$ 213,159$
$11,867,293$	$\$ 0.00494$	$\$ 58,658$
$11,867,293$	$\$ 0.01654$	$\$ 196,333$
$11,867,293$	$\$ 0.01008$	$\$ 19,679$
$11,867,293$	$\$ 0.02663$	$\$ 316,012$
$11,867,293$	$\$ 0.00000$	$\$ 0$
$11,867,293$	$\$ 0.14914$	$\$ 1,769,884$
$11,867,293$	$\$ 0.00160$	$\$ 8,959$
	$\$ 0.00038$	$\$ 4,541$
	$\$ 0.20065$ System Charges per kWh	$\$ 0$
		$\$ 2,381,214$

$\$ 196,333$
$\$ 119,679$ $\$ 119,679$
$\$ 316,012$
$\$ 1,769,884$
$\$ 18,959$
$\$ 4,541$
\$2,381,214

SYSTEM CHARGES PER KWH APPILCABLE TO LIGHTING KWH ESTIMATES
UNMETERED METERED
TE 56

	CUSTOMER OWNED					
RATE 56 TOTAL	RATE 19 PLANT (1) TABLE 9	RATE 19 NOE TABLE 11B	RATE 19 TOTAL	RATE 56 PLANT (1) TABLE 9	RATE 56 NOE TABLE 11B	RATE 56 TOTAL
$\$ 0.02320$			$\$ 0.00000$	$\$ 0.01541$	$\$ 0.00550$	$\$ 0.02091$
$\$ 0.00670$			$\$ 0.00000$	$\$ 0.00594$	$\$ 0.00054$	$\$ 0.00648$
$\$ 0.03397$			$\$ 0.00000$	$\$ 0.02098$	$\$ 0.00917$	$\$ 0.03015$
$\$ 0.00000$			$\$ 0.00000$		$\$ 0.00000$	$\$ 0.00000$
$\$ 0.24071$			$\$ 0.00000$	$\$ 0.00000$	$\$ 0.00000$	$\$ 0.00000$
$\$ 0.30458$	$\$ 0.00000$	$\$ 0.00000$	$\$ 0.00000$	$\$ 0.04233$	$\$ 0.01521$	$\$ 0.05754$

(2) Nent costs for customer-owned lighting are not included in metered rates since customer has incurred the costs.
(2) Net Operating Expenses (NOE) are calculated as Total Operating Expense less Other Operating Revenue and Wholesale Revenue.

NWE SD LIGHTING COST ANALYSIS - 12/31/22
TABLE 9 - NET PLANT AND FUNCTIONAL COST DEVELOPMENT

NWE SD LIGHTING COST ANALYSIS - 12/31/22
TABLE 10 - FUNCTIONAL GROSS PLANT, ACCUMULATED DEPRECIATION, \& NET PLANT

Line No.	A	B	c	D	E	F	G	H	1	J	K	L	M	$\begin{gathered} \mathrm{N} \\ \text { TOTAL LTG } \\ \% \mathrm{DEP} \end{gathered}$
		GROSS PLANT			ACCUM DEPRECIATION			NET CUSTOMER DISTRIBUTION			NET PLANT			
		Rate 19	Rate 56	Total Ltg	Rate 19	Rate 56	Total Ltg	Rate 19	Rate 56	Total Ltg	Rate 19	Rate 56	Total Ltg	
1 PRODUCTION														
2	PRODUCTION	\$593,850	\$1,496,286	\$2,090,135	\$188,896	\$475,950	\$664,846	\$35,916.88	\$4,138.42	\$40,055	\$440,870	\$1,024,474	\$1,465,344	31.81\%
3														
4														
5	TRANSMISSION													
6	TRANSMISSION	\$238,527	\$601,002	\$839,529	\$82,328	\$207,436	\$289,764	\$13,853.93	\$1,596.28	\$15,450	\$170,053	\$395,162	\$565,216	34.52\%
8														
9	distribution													
10	PRIMARY SUBSTATIONS	\$167,278	\$393,797	\$561,075	\$47,752	\$112,415	\$160,167	\$10,601.23	\$1,141.27	\$11,742	\$130,127	\$282,523	\$412,650	28.55\%
	PRIMARY LINES	\$380,943	\$896,796	\$1,277,740	\$146,701	\$345,355	\$492,055	\$20,775.91	\$2,236.61	\$23,013	\$255,019	\$553,678	\$808,697	38.51\%
14	SECONDARY LINES	\$213,090	\$501,644	\$714,734	\$78,518	\$184,843	\$263,362	\$11,935.66	\$1,284.92	\$13,221	\$146,507	\$318,086	\$464,593	36.85\%
15 le $\$$														
16	TRANSFORMERS	\$140,037	\$329,667	\$469,703	\$38,333	\$90,242	\$128,576	\$9,020.46	\$971.09	\$9,992	\$110,724	\$240,396	\$351,119	27.37\%
17 (${ }^{(1)}$														
18	SERVICES	\$0	\$0	\$0	\$0	\$0	\$0	\$0.00	\$0.00	\$0	\$0	\$0	\$0	
19														
20	METERS	\$0	\$0	\$0	\$0	\$0	\$0	\$0.00	\$0.00	\$0	\$0	\$0	\$0	
21														
22	LIGHTING													
23 (
24	371 - INSTALL ON CUST PREM	\$1,901,066	\$0	\$1,901,066	\$1,247,284	\$0	\$1,247,284	\$57,986.39	\$0.00	\$57,986	\$711,768	\$0	\$711,768	65.61\%
25														
26	372 - LEASED PROPERTY	\$0	\$0	\$0	\$0	\$0	\$0	\$0.00	\$0.00	\$0	\$0	\$0	\$0	
27														
28	373 - ST LTG \& SIGNAL SYS	\$0	\$11,374,532	\$11,374,532	\$0	\$7,462,802	\$7,462,802	\$0.00	\$15,865.73	\$15,866	\$0	\$3,927,597	\$3,927,597	65.61\%
29														
30	SUBTOTAL LIGHTING	\$1,901,066	\$11,374,532	\$13,275,598	\$1,247,284	\$7,462,802	\$8,710,086	\$57,986	\$15,866	\$73,852	\$711,768	\$3,927,597	\$4,639,364	65.61\%
32														
33 CUSTOMER DISTRIBUTION (1)														
34	CUSTOMER METER READING	\$0	\$0	\$0	\$0	\$0	\$0							
35	CUSTOMER RECORDS	\$34,784	\$5,857	\$40,641	\$12,365	\$2,082	\$14,447							35.55\%
36	CUSTOMER SERVICE \& INFO	\$213,602	\$36,398	\$250,000	\$75,931	\$12,939	\$88,870							35.55\%
37	SUBTOTAL CUSTOMER DISTRIBUTION	\$248,386	\$42,255	\$290,642	\$88,296	\$15,021	\$103,317	\$160,090	\$27,234	\$187,325				35.55\%
39														
40	TOTAL	\$3,883,177	\$15,635,979	\$19,519,156	\$1,918,108	\$8,894,064	\$10,812,172	\$160,090	\$27,234	\$187,325			\$0.01	55.39\%
41														
42														
43	TOTAL EXCL CUSTOMER DISTRIBUTION	\$3,634,790	\$15,593,724	\$19,228,514	\$1,829,812	\$8,879,043	\$10,708,855				\$1,965,068	\$6,741,915	\$8,706,984	
44														
45													\$8,519,659	
46													\$187,325	check (Net Customer
48														
49														
50														
51 Notes:														
52 (1) Customer Distribution is allocated to Production, Transmission and Distribution Plant based on line item net plant.														
53 (2) Source for Gross Plant and Accumulated Depreciation from file "TY2022 Adjusted NWE SD Elec Embedded ACOS Rev @ 06-09-23.xls"														
54														
55														

NWE SD LIGHTING COST ANALYSIS - 12/31/2
TABLE 11A - FUNCTIONAL NET OPERATING EXPENSE DETAIL AND UNIT COSTS (COMPANY OWNED)

PRODUCTION
GROSS PRODUCTION EXPENSE
BASE FUEL
$=$ BASE AND ENERGY

```
RANSMISSION
    TRANSMISSION
    EXTERNAL TRANSMISSOIN
```

DISTRIBUTION
PRIMARY SUBSTATIONS
PRIMARY LINES
SECONDARY LINES
LINE TRANSFORMERS
SERVICES
METERS
LIGHTING
REDDY-GUARD - UNMETERED
REDDY-GUARD - METERED
HIGHWAY, STREET, \& AREA LIGHTING
TOTAL LIGHTING
TOTAL DIST OPERATING EXP EXPENSE
TOT DIST EXCL SERV, METERS, \& LTG
USTOMER DISTRIBUTION
CUSTOMER METER READING
CUSTOMER RECORDS
CUSTOMER SERVICE \& INFO
TOTAL CUSTOMER DISTRIBUTION
TOTAL CUST DIST EXCL MET READING
TOTAL NET OPER EXP EXPENSE (7)
TOTAL NET OPER EXP EXPENSE (7)
TOTAL NET OPER EXP EXPENSE (COS Check)
TOTAL NOE EXCL BASE FUEL \& EXT TRANSM
TOTAL NET OPER EXP EXCL FUEL, EXT TRANSM,
SERVICES, METERS, MET LTG \& CUST DIST
Notes:
(1) Production kWh charge excludes peak production and base fuel expenses
(2) Transmission kWh charge excludes external transmission expenses.
(3) Distribution kWh charge excludes services, meters, and meter reading expenses.
(4) Detail Net Operating Expense (NOE) from Workpaper 4
(5) kWh Sales are actual consumption for these units. The kWh for customer owned are not included in COS model in the lighting rate but are booked in class where owned
6) Metered Unit Cost includes Net Operating Expenses associated with only metered units
(7) Net Operating Expense (NOE) exclude Ad Valorem Expenses

B	c	D	E	F	G	H	1	J	K	L
RATE 19	RATE 56	RATE 19	RATE 19	RATE 56						
LIGHTING	LIGHting	CUSTOMER	CUSTOMER	total	CO OWNED	SALES	CO OWNED	UNMETERED	METERED	unit noe
NET OPER	NET OPER	DIST	DIST	Lighting	TOTAL LIGHTING	KWH (5)	SALES	COSTS	COSTS	COSTS
EXPENSE (4)	EXPENSE (4)	EXPENSE	EXPENSE	NOE			KWH (5)	PER KWH	PER KWH (6)	PER KWH
\$187,765	\$388,981									
\$153,621	\$313,832									
\$34,143	\$75,149	\$13,518	\$687	\$47,661	\$75,837	5,060,641	9,739,184	\$0.00942		\$0.00779
\$3,349	\$7,371	\$1,326	\$67	\$4,675	\$7,438	5,060,641	9,739,184	\$0.00092		\$0.00076
\$70,002	\$143,951									
\$9,276	\$19,075	\$3,673	\$174	\$12,949	\$19,250	5,060,641	9,739,184	\$0.00256		\$0.00198
\$30,195	\$62,092	\$11,954	\$568	\$42,149	\$62,660	5,060,641	9,739,184	\$0.00833		\$0.00643
\$16,421	\$33,767	\$6,501	\$309	\$22,922	\$34,076	5,060,641	9,739,184	\$0.00453		\$0.00350
\$5,052	\$10,388	\$2,000	\$95	\$7,052	\$10,483	5,060,641	9,739,184	\$0.00139		\$0.00108
\$0	\$0									
\$0	\$0									
\$134,393	\$0	\$53,208	\$0	\$187,601	\$0	5,060,641		\$0.03707		\$0.00000
\$80,959						2,412,897			\$0.03355	
\$0	\$1,288,503	\$0	\$11,783	\$0	\$1,300,287		9,739,184	\$0.00000		\$0.13351
\$215,352	\$1,288,503									
\$276,296	\$1,413,826	\$77,336	\$12,930	\$272,672	\$1,426,756					
\$60,943	\$125,323			\$85,072	\$126,469					

SUMMARY OF OPERATING EXP CHARGES			
	RATE 19	RATE 19	RATE 56
	PER KWH	PER KWH	PER KWH
	UNMETERED	METERED	CO OWNED
PRODUCTION (1)	\$0.00942		\$0.00779
TRANSMISSION (2)	\$0.00092		\$0.00076
DISTRIBUTION (3)	\$0.01681		\$0.01299
REDDY-GUARD LIGHTING	\$0.03707	\$0.03355	\$0.00000
HIGHWAY, ST, \& SGNL LTG	\$0.00000		\$0.13351
TOTAL OPERATING EXP	\$0.06422	\$0.03355	\$0.15505
Note: kWh charge rounded to 5 decimals.			

NWE SD LIGHTING COST ANALYSIS - 12/31/22
TABLE 11B - FUNCTIONAL NET OPERATING EXPENSE DETAIL AND UNIT COSTS (CUSTOMER OWNED)

CUSTOMER DISTRIBUTION		
CUSTOMER METER READING	$\$ 0$	$\$ 0$
CUSTOMER RECORDS	$\$ 3,484$	$\$ 441$
CUSTOMER SERVICE \& INFO	$\$ 1,181$	
TOTAL CUSTOMER DISTRIBUTION	$\$ 15,666$	$\$ 1,981$
TOTAL CUST DIST EXCL MET READING	$\$ 15,666$	$\$ 1,982$
TOTAL NET OPER EXP EXPENSE (6)	$\$ 2,066,179$	$\$ 98,366$
TOTAL NET OPER EXP EXPENSE (Check)	$\$ 2,066,179$	
TOTAL NOE EXP EXCL BASE FUEL \& EXT TRANSM	$\$ 1,542,108$	$\$ 32,078$
TOTAL NOE EXCL FUEL, EXTERNAL TRANSM,	$\$ 1,526,442$	$\$ 30,096$
SERVICES, METERS, \& CUSTOMER DIST		
PERCENT OF CUSTOMER OWNED UNITS		$12,65 \%$

SUMMARY OF OPERATING EXP CHARGES	
RATE 56	
PER KWH	
CUST OWNED	
$\$ 0.00550$	
PRODUCTION (1)	$\$ 0.00054$
TRANSMISSION (2)	$\$ 0.00917$
DISTRIBUTION (3)	$\$ 0.00000$
REDDY-GUARD LIGHTING	$\$ 0.00000$
HIGHWAY, ST, \& SGNL LTG	$\$ 0.01521$

[^0]

NWE SD LIGHTING COST ANALYSIS - 12/31/22
TABLE 13 - KWH SALES AND UNIT COUNT

Line	A	D	G				
No.	Rate Class (1)	kWh (Meter)	Average Annua	Customers			
1	10 - Residential Basic	395,117,244	39,134				
2	11 - Residential w/Sp Htg	184,884,645	10,896				
3	14 - Residential Sp Htg \& Cooling	14,804,756	1,032				
4	15 - Residential Dual-Fuel	88,752	7				
5	16,18- Irigation Interruptible Service	2,645,297	68				
6	17 - Irrigation Service	358,611	16				
7	21 - Commercial Gen Serv	73,224,645	8,763				
8	23 - Commercial Sep Mtr Space Htg	566,638	59				
9	24 - Commercial Sp Htg \& Cooling	42,249,519	586				
10	25 - Commercial All-Inclusive Comm	40,430,746	802				
11	33 - Commercial \& Industrial	161,418,897	2,095				
12	34 - Comercial \& Industrial Large	788,770,509	488				
13	41 - Municipal Pumping	7,274,425	274				
14	19 - Reddy-Guard Lighting	5,041,019	3,363				
15	56 - Highway, Street, \& Area Lighting	11,867,293	142				
16	70 - Controlled Off-Peak	834,798	6				
17	Total SD	1,729,577,794	$\underline{67,730}$				
18							
19							
20							
21							
22							
23							
24	kWh Source: Table 7		Estimated				
25		Unmetered	Metered	Total	Total	Total	cos
26		kWh	kWh	kWh	CP	Non CP	
27	19 - Reddy-Guard Lighting						
28	Input	5,060,641		5,060,641			
29	Mercury Vapor	1,633,437	847,167				
30	Other	3,427,204	1,565,730				
31	Total Reddy-Guard Lighting	5,060,641		5,060,641	297	1,324	5,041,019
32							Does not incluc
33							19,622
34		Co Owned	Cust Owned				
35		kWh	kWh				
36	56 - Highway, Street, \& Area Light						
37	Input	9,739,184	2,108,406	11,847,590			
38	Mercury Vapor	3,210,282	22,047	3,232,328			
39	Other	6,528,902	2,086,359	8,615,261			
40	Total Highway, Street, \& Area Lig	9,739,184	2,108,406	11,847,590	749	3,117	11,867,293
41							Includes U30-F
42	Total Lighting						$(19,703)$
43	Input	14,799,825	2,108,406	16,908,231			
44	Total Lighting	14,799,825	2,108,406	16,908,231			
45							
46	Total Unmetered kWh			16,908,231			16,908,312
47							
48							
48							
49	Annual Number of Units	Co Owned	Cust Owned	Total			Avg \# of Cust
50	Source: Table 7	EOY Units	EOY Units	EOY Units			COS
51	19 - Reddy-Guard Lighting	6,932		6,932			3,363
52	56 - Highway, Street, \& Area Ligh	9,910	1,435	11,345			142
53	Total Lighting	16,842	1,435	18,277			3,505
54							
55							
56							
57							
58	Notes:						
59	(1) Source file "TY2022 Adjusted NWE SD Elec Embedded ACOS Rev @ 06-09-23.xls"						
60							

NWE SD LIGHTING COST ANALYSIS - 12/31/22
TABLE 14 - LIGHT-EMITTING DIODE (LED) RATE DEVELOPMENT

TABLE WP 1 -SYSTEM OVERALL REVENUE REQUIREMENT DETAILS

Line No.		PRESENT	BASE INCREASE	PROPOSED
1	GROSS PLANT	\$19,519,156		\$19,519,156
2				
3	TOTAL SALES RATE REVENUES EXCL FUEL (1)	\$119,514,621	25.83\%	\$150,388,295
4				
5	O\&M EXCL FUEL	\$87,929,366		\$87,929,366
6				
7	BASE REV W/O O\&M	\$31,585,255		\$62,458,930
8				
9	BASE REV TO GROSS PLANT	\$1.61817		\$3.19988
10				
11	TOTAL REVENUE TO GROSS PLANT	\$6.12294		\$7.70465
12				
13				
14				
15				
16				
17				
18				
19				
20	REVIEW			
21				
22	RATE REVENUE FROM COST OF SERVICE MODEL	CURRENT	INCREASE (5)	PROPOSED
23	LIGHTING RATE 19 REVENUE	\$570,629	\$125,277	\$695,906
24	LIGHTING RATE 56 REVENUE	\$1,401,401	\$304,644	\$1,706,045
25	TOTAL LIGHTING REVENUE	\$1,972,030	\$429,921	\$2,401,951
26				
27				
28	PRESENT RATE REVENUE WITHIN LIGHTING STUDY (2)		Caclculated	
29	LIGHTING RATE 19 REVENUE (3)	\$572,560	\$123,346	\$695,906
30	LIGHTING RATE 56 REVENUE (4)	\$1,397,779	\$308,266	\$1,706,045
31	Rate U30-STKLR (Kaylor Cust Owned)	\$1,635		
32	TOTAL LIGHTING REVENUE	\$1,971,974	\$431,612	\$2,401,951
33		(\$56)		
34				
35	RATE REVENUE CALCULATED WITH NEW RATES			
36	LIGHTING RATE 19 REVENUE		\$125,279	\$695,908
37	LIGHTING RATE 56 REVENUE		\$304,645	\$1,706,046
38	TOTAL LIGHTING REVENUE		\$429,924	\$2,401,954
39				
40	LIGHTING REVENUE DIFFERENCE (Line 25-Line 38)		\$3	\$3
41				
42				
43				
44				
45	Notes:			
46	(1) Source for current and proposed rate revenue from file "TY	Adjusted NWE	c Embedded AC	@ 06-09-23.x
47	(2) Source current rate revenues and kWh from Table 7 files "	0 Reddy - Resi	", "DG1 U20 Reddy	mmercial", and
48	(3) Source for calculated proposed rate revenue from Tables 1			
49	(4) Source for calculated proposed rate revenue from Tables 4			
50	(5) Source for Revenue Increase is Row 74 of the Rate Moder			

Rev Code				CustomerOwned Rate(Present Rate)	${ }_{50.020290}$	$\underset{\substack{\text { mber } 20202410}}{\text { RATE }}$	\$0.009130	\$0.032830		2022	2022
	Wats/Hour	$\begin{aligned} & \text { Monthy } \\ & \text { kW per } \\ & \text { Unit } \end{aligned}$	Company Owned Rate Rate)		Cost of fuel	Ad Valorem	Transm. By Others				Annual kWh

LineNo.	NWE SD LIGHTING COST ANALYSIS - 12/31/22 TABLE WP 2 - LIGHTING SCHEDULE RATE DETAIL												
							November 2022 RATE			50.032830		$2022 \quad 2022$	
		Rev Code	Wats/Hour	$\begin{gathered} \text { Monthly } \\ \text { KWM per } \\ \text { Unit } \end{gathered}$	Company Owned Rate (Present Rate)	$\begin{gathered} \text { Customer } \\ \text { Owned Rate } \\ \text { (Pesest) } \\ \text { Rate) } \end{gathered}$	Cost of Fuel	Ad Valorem	Transm. By Others	Co Own Unit Rate Per Fuel, Ad Valorem, Transm	Cust Owned Unit Rate with Fuel, Ad Valorem, Transm	End of Year Number of Number of Units	Annual kWh
113 Rate U30 - Public Lighting - Unmetered													
114		S											
115	4095 HPS 35 WATT-14 KWHMO	RMOO1	42	14.07	54.000		50.285480	\$0.047799	50.128459	\$4.461992		0	0
116	5850 HPS 50 WATT- 20 KWHMO	RM002	59	19.77	\$4.150		${ }^{50.401032}$	\$0.067399	S0.180454	${ }^{54.798888}$		0	
117	11700 HPS 100 WATT-50 kWHMO	RM003	148	49.58	\$7.430		\$1.00578	\$0.169068	\$0.452665	\$9.05771		0	0
118	17550 HPS 150 WATT - $70 \mathrm{KWH} / \mathrm{MO}$	RM004	208	69.68	\$77.750		\$1.413807	\$0.237609	\$0.636178	\$10.03759		4	5,370
119	29250 HPS 250 WATT- 108 KWHMMO	RM005	322	107.87	\$10.960		\$2.188682	\$0.367837	50.984853	\$14.50137		2	2,706
120	46800 HPS 400 WATT-166 KWH/MO	RM006	496	166.16	\$12.940		${ }_{\$ 3.371386}$	\$0.566606	\$1.577041	\$18.39503		1	O87
${ }^{121}$	117000 HPS 1000 WATT-390 KWHMM	RM007	1164	389.94	\$27.070		\$7.911883	\$1.329695	\$3.560152	\$39.87173		0	0
${ }_{123}^{122}$	8750 MV 175 WATT- 72 KWH MO	${ }_{\text {Mercury }}^{\text {RM010 }}$	por 216	72.36	54.920		\$1.468184	\$0.246748	50.660647	\$7.29558		3	2.495
124	12500 MV 250 WATT - $101 \mathrm{KWH} / \mathrm{MO}^{\text {O}}$	RM011	301	100.84	S6.240		\$2.045942	\$0.343847	S0.920624	\$9.55041		0	
125	20000 MV 400 WATT- 159 KWHMO	RM012	474	158.79	59.260		\$3.221849	\$0.541474	\$1.499753	\$14.47308		0	0
126	50000 MV 1000 WATT- $380 \mathrm{KWH} / \mathrm{MO}$	RM013	1135	380.23	\$17.560		\$7.714765	\$1.296567	S3.471454	\$30.04279		0	0
127		Metal Halid											
${ }^{128}$	15225 MH 175 WATT - 69 KWH MMO	RM014	${ }^{205}$	${ }^{68.68}$	\$5.050		\$1.393416	\$0.234182	\$0.627003	\$7.30460		0	${ }^{0}$
129	21750 MH 250 WATT - $97 \mathrm{KWH} / \mathrm{MO}$	RM015	290	97.15	S6.430		\$1.97174	\$0.331282	50.886980	\$9.61943		4	4,271
130	34800 MH 400 WАTT- 153 KWH MO	RM016	458	153.43	59.430		\$3.113095	\$0.523196	\$1.400816	\$14.46711		1	2,087
${ }^{131}$		LED											
132	LED-60	RM026	60	20.10	58.880		50.407829	\$0.068541	50.183513	\$9.53988		${ }^{3}$	380
133 134 1	LED-73	RM035	73	24.46	\$9.344		S0.466192	\$0.083392	50.223274	\$10.14686		1	307
${ }_{135}^{134}$													
${ }_{137}^{136}$ Rate U30 - Public Lighting - Metered													
139	4095 HPS 35 WATT-14 KWHMO	RM100	42	14.07		\$3.63				\$3.63		0	
140	5850 HPS 50 WATT- 20 KWHMO	RM101	59	19.77		\$3.63				\$3.63		0	0
141	11700 HPS 100 WATT-50 KWHMO	RM102	148	49.58		\$5.00				${ }_{55.00}$		2	1,190
142	175550 HPS 150 WATT- 70 KWHMO	RM103	208	69.68		\$5.88				\$5.88		2	1,672
143	29250 HPS 250 WATT-108 KWHMMO	RM104	322	107.87		57.64				\$7.64		0	
144 145 1	46800 HPS 400 WATT- 166 KWH/MO 117000 HPS 1000 WATT- 390 KWHMM	RM105	496 1164	lis6.16		\$8.05				\$88.05		0	\bigcirc
146		Mercury V											
147	8750 MV 175 WATT- $72 \mathrm{KWH} / \mathrm{MO}^{\text {O }}$	RM110	216	72.36		\$2.31				\$2.31		1	868
148	12500 MV 250 WATT- $101 \mathrm{kWH} / \mathrm{M}^{\text {O }}$	RM111	${ }^{301}$	100.84		\$2.88				${ }^{\$ 2.88}$		0	
149	20000 MV 400 WATT- 159 KWHMM	RM112	474	158.79		${ }_{53710}$				\$3.63		0	0
150 151	50000 MV 1000 WATT- $380 \mathrm{KWH} / \mathrm{MO}$	RM113	1135	380.23		\$7.10				\$7.10		0	0
152	15225 MH 175 WATT- 69 KWHMO	RM114	205	68.68		\$2.73				\$2.73		0	0
153	21750 MH 250 WATT - $97 \mathrm{KWH} / \mathrm{MO}$	RM115	290	97.15		\$6,35				\$6.35		0	0
154 155	34800 MH 400 WATT- 153 KWHMO	RM116	458	153.43		\$8.05				\$8.05		0	
15 15 158	LED-60	RM126	60	20.10	\$7.860					50.00		1	243
												${ }^{25}$	${ }^{23,676}$

					$\begin{gathered} \text { S0.020290 } \\ \mathrm{Nc} \end{gathered}$	ember 2022 RAT	50.099130	\$0.032830		2022	202
Rev Code	Wats/Hour	$\begin{aligned} & \text { Monthy } \\ & \text { KNM per } \\ & \text { Unit } \end{aligned}$	Company Owned Rate (Present Rate)	Customer Owned Rate (Present Rete)	Cost of Fuel	Ad Valorem	$\begin{gathered} \text { Transm. By } \\ \text { Others } \end{gathered}$	Co Own Unit Month with Fuel, Ad Valorem, Trasm,		$\begin{gathered} \text { End of Year } \\ \text { Number of } \\ \text { Units } \end{gathered}$	Annual kWh

RATE 56 - COMPANY OR CUSTOMER OWNED HIGHWAY, STREET AND AREA LIGHTING SYSTEMS
52 Rate U30 - Metal Pole Mounting

\$0.084534
$\$ 0.169068$ $\$ 0.237609$
$\$ 0.237609$ $\$ 0.237609$
${ }_{\text {\$0, }}^{\$ 0.367837787}$
\$0.367837
\$0.566606
\$0.566006
\$1.329695
\$1.329695
\$0.246748
\$0.246748
\$0.343847
\$0.343847
\$0.541474
\$0.541474
\$1.296567
\$1.296567
\$0.234182
\$0.331282
\$0.523196
\$0.047979
\$ ${ }_{\text {S0.0.058260 }}^{\$ 0.081107}$
\$0.083392
\$0.117662
\$0.123374
\$0.143936
${ }_{80.175922}$
\$0.215904
\$0.306150
\$0.317573
\$0.364410

\$0.2263
50.45266 S0.4526
S0.6361
S0.63617
S1.57704
\$1.517041
\$3.560152
\$3.560
50.660647
${ }^{50.66066}$
S0.92062
\$0.92062
\$1.44975
51.44975
7145
\$3.47145
50.627003
50.860980
\$1.400816
S0.12845
S0.217157
S0.2232
${ }_{\text {So }} 5$.31503
\$0.330323
50.38537
S0.4771017
\$0.578066
50.63006
\$0.819691
S0.85027
97

$\$ 20.69771$
$\$ 21.67759$
$\$ 22.55137$
$\$ 29.23503$
$\$ 50.54173$
$\$ 14.35558$
$\$ 19.65041$
$\$ 24.13308$
$\$ 41.47279$

$\$ 1.54386$
$\$ 3.10771$
$\$ 4.36759$
$\$ 6.73137$
$\$ 10.21503$
$\$ 24.62173$
$\$ 4.51558$
$\$ 6.07041$
$\$ 10.05308$
$\$ 221.28279$
$\$ 2.25460$
$\$ 6.79933$
$\$ 9.57711$
$\$ 1.17990$
$\$ 1.63286$
$\$ 22.37880$
$\$ 2.48379$

[^1]

NWE SD LIGHTING COST ANALYSIS - 12/31/22

 TABLE WP 3 - COMPANY BURNING HOURS| | Daily | Monthly | |
| ---: | :--- | ---: | ---: |
| 1 | JANUARY | 13.9 | 430.9 |
| 2 | FEBRUARY | 12.8 | 358.4 |
| 3 | MARCH | 11.3 | 350.3 |
| 4 | APRIL | 9.7 | 291.0 |
| 5 | MAY | 8.4 | 260.4 |
| 6 | JUNE | 7.7 | 231.0 |
| 7 | JULY | 8.1 | 251.1 |
| 8 | AUGUST | 9.2 | 285.2 |
| 9 | SEPTEMBER | 10.7 | 321.0 |
| 10 | OCTOBER | 13.3 | 412.3 |
| 11 | NOVEMBER | 14.3 | 408.0 |
| 12 | DECEMBER | | 443.3 |
| 13 | | | |
| 14 | ANNUAL | | $4,042.9$ |
| 15 | MONTHLY AVERAGE | | 336.9 |
| 16 | | | |
| 17 | | | |
| 18 | | | |
| 19 | | | |
| 20 | | | |
| 21 | | | |
| 22 | | | |
| 23 | | | |
| 24 | | | |
| 25 | | | |

Reddy-Guard A\&G PRODUCTIO
 PRODUCTION EXPENSE
 BASE FUE $=$ BASE
 TRANSMISSION
 TRANSMISSION EXTERNAL TRANSMIISSION
 DISTRIBUTION PRIMARY SUBSTATIONS
 PRIMARY LINES
 secondary lines
 LINE TRANSFORMERS
 SERVICES
 meters
 LIGHTING REDDY-GUARD
 HIGHWAY, STREET, \& AREA
 total lighting

TOTAL DIST OPERATING EXP EXPENSE
TOT DIST EXCL SERV, METERS, \& LTG
3 CUSTOMER DISTRIBUTION
CUSTOMER METERREADING
CUSTOMER RECORDS
CUSTOMER SERVICE \& INF
TOTAL CUSTOMER DISTRIBUTION
TOTAL OPER EXP EXPENSE (2)
TOTAL NOE EXCL AD VALOREM ($\cos \mathrm{ck}$)
4 TOTAL ADJ EXP EXCL BASE FUEL \& EXT TRANSM
TOTAL ADJ EXP EXCL FUEL, EXT TRANSM,
SERVICES, METERS, \& CUSTOMER DIST

Notes:
(1)
(2)

(1) Customer Owned Operating Expenses exclude O\&M Maintenance
(2) Total Operating Expense excludes Ad Valorem
(3) Net Operating Expense (NOE) equals Total Operating Expenses
(4) Source for Operating Expense data is file TY2014 NWE SD Elec

NWE SD LIGHTING CO
TABLE WP 4-NET OPERATING

(Colo O Colp)
\(\left.\left.$$
\begin{array}{rrr}\$ 0 \\
\$ 1,328\end{array}
$$\right) \begin{array}{r}\$ 0

\$ 1,328\end{array}\right)\)| $\$ 0$ |
| :---: |
| $\$ 0$ |

$\$ 0$	$\$ 0$	$\$ 0$
$\$ 105$	$\$ 105$	$\$ 0$
$\$ 352$	$\$ 352$	$\$ 0$
$\$ 0$	$\$ 0$	$\$ 0$
$\$ 10,534$	$\$ 10,534$	$\$ 0$
$\$ 0$	$\$ 0$	$\$ 0$

$\begin{array}{cl}\text { Line } & \text { RATE } 56 \\ \text { No. } & \\ 1 & \text { Highway, Street, \& Area Lighting A\&G } \\ 2 & \text { PRODUCTION }\end{array}$
 Highway, Street, \& Area Ligning PRODCTION PRODUCTION EXPENSE

PRODUCT
BASE FUEL
BASE
$=\stackrel{\text { BASE F }}{\text { BASE }}$
TRANSMISSION
TRANSMISSION
EXTERNAL TRANSMISSION
distribution
PRIMARY SUBSTATIONS
PRIMARY LINES
SECONDARY LINES
LINE TRANSFORMERS
services
meters
LIGHTING
REDDY-GUAR
REDDYYGUARD
HIGHWAY, STREET, \& AREA
TOTAL LIGHTING
TOTAL DIST OPERATING EXP EXPENSE
TOT DIST EXCL SERV, METERS, \& LTG
34 CUSTOMER DISTRIBUTION
CUSTOMER METER READII
CUSTOMER RECORDS
CUSTOMRERECORDS
CUSTOMER RERVICE \& INF
CUSTOMER SERVICE \& INFO
TOTAL CUSTOMER DISTRBUTION
TOTAL CUSTOMER DISTRIBUTION
TOTAL CUST DIST EXCL MET READING
TOTAL OPER EXP EXPENSE (2)
TOTAL NOE EXCL AD VALOREM
TOTAL NOE EXCL AD VALOREM (COS Ck)

Notes: (1) Net Customer Owned Operating Expenses exclude Lighting Expen (2) Total Operating Expense excluddes Ad Valorem
(3) Net Operating Expense (NO) equals Total Operating Expenses 1 E
(4) Source for Operating Expense data is fie TY2014 NWE SD Elec E

NWE SD LIGHTING CO
TABLE WP 4-NET OPERATING
A

N	\bigcirc	P
	Other	
Total Other Revenues	Operating Revenues	Wholesale Revenues
(Colo + Col P)		
so	\$0	so
\$3,346	\$3,346	\$0
\$17,013	\$17,013	so
\$0	\$0	so
\$270	\$270	so
\$1,412	\$1,412	so
\$746	\$746	so
\$208	\$208	so
\$0	\$0	so
\$0	\$0	\$0
\$5,245	\$5,245	so

$\begin{array}{rrr}\$ 0 & \$ 0 & \$ 0 \\ \$ 18 & \$ 18 & \$ 0 \\ \$ 60 & \$ 60 & \$ 0 \\ & & \\ \$ 0 & \$ 0 & \$ 0 \\ \$ 28,318 & \$ 28,318 & \$ 0\end{array}$

NorthWestern Corporation, dba NorthWestern Energy
 Class Cost of Service Study
 Income Statement-Present Rates
 South Dakato Electric
 Test Year Ended December31, 2022
 Rate 34 - Large Commercial \& Industrial Standby Rate

[^0]: Notes:
 (1) P
 (1) Production kWh charge excludes fuel expenses.
 (2) Transmission kWh charge excludes external transmission expenses
 (3) Distribution kWh charge excludes services, meters, and meter reading expenses
 (4) Detail Net Operating Expense (NOE) from Workpaper 4
 5) Source: Table 13
 (6) Net Operating Expense excludes Ad Valorem Expenses

[^1]:

